scholarly journals Theranostic OCT microneedle for fast ultrahigh-resolution deep-brain imaging and efficient laser ablation in vivo

2020 ◽  
Vol 6 (15) ◽  
pp. eaaz9664 ◽  
Author(s):  
Wu Yuan ◽  
Defu Chen ◽  
Rachel Sarabia-Estrada ◽  
Hugo Guerrero-Cázares ◽  
Dawei Li ◽  
...  

Current minimally invasive optical techniques for in vivo deep-brain imaging provide a limited resolution, field of view, and speed. These limitations prohibit direct assessment of detailed histomorphology of various deep-seated brain diseases at their native state and therefore hinder the potential clinical utilities of those techniques. Here, we report an ultracompact (580 μm in outer diameter) theranostic deep-brain microneedle combining 800-nm optical coherence tomography imaging with laser ablation. Its performance was demonstrated by in vivo ultrahigh-resolution (1.7 μm axial and 5.7 μm transverse), high-speed (20 frames per second) volumetric imaging of mouse brain microstructures and optical attenuation coefficients. Its translational potential was further demonstrated by in vivo cancer visualization (with an imaging depth of 1.23 mm) and efficient tissue ablation (with a 1448-nm continuous-wave laser at a 350-mW power) in a deep mouse brain (with an ablation depth of about 600 μm).

Author(s):  
Xiufeng Li ◽  
Victor T C Tsang ◽  
Lei Kang ◽  
Yan Zhang ◽  
Terence T W Wong

AbstractLaser diodes (LDs) have been considered as cost-effective and compact excitation sources to overcome the requirement of costly and bulky pulsed laser sources that are commonly used in photoacoustic microscopy (PAM). However, the spatial resolution and/or imaging speed of previously reported LD-based PAM systems have not been optimized simultaneously. In this paper, we developed a high-speed and high-resolution LD-based PAM system using a continuous wave LD, operating at a pulsed mode, with a repetition rate of 30 kHz, as an excitation source. A hybrid scanning mechanism that synchronizes a one-dimensional galvanometer mirror and a two-dimensional motorized stage is applied to achieve a fast imaging capability without signal averaging due to the high signal-to-noise ratio. By optimizing the optical system, a high lateral resolution of 4.8 μm has been achieved. In vivo microvasculature imaging of a mouse ear has been demonstrated to show the high performance of our LD-based PAM system.


Author(s):  
Sergey Turtaev ◽  
Ivo T. Leite ◽  
Tristan Altwegg-Boussac ◽  
Janelle M. P. Pakan ◽  
Nathalie L. Rochefort ◽  
...  

2020 ◽  
Vol 6 (40) ◽  
pp. eabc6521 ◽  
Author(s):  
Zhongya Qin ◽  
Congping Chen ◽  
Sicong He ◽  
Ye Wang ◽  
Kam Fai Tam ◽  
...  

Optical deep-brain imaging in vivo at high resolution has remained a great challenge over the decades. Two-photon endomicroscopy provides a minimally invasive approach to image buried brain structures, once it is integrated with a gradient refractive index (GRIN) lens embedded in the brain. However, its imaging resolution and field of view are compromised by the intrinsic aberrations of the GRIN lens. Here, we develop a two-photon endomicroscopy by adding adaptive optics based on direct wavefront sensing, which enables recovery of diffraction-limited resolution in deep-brain imaging. A new precompensation strategy plays a critical role to correct aberrations over large volumes and achieve rapid random-access multiplane imaging. We investigate the neuronal plasticity in the hippocampus, a critical deep brain structure, and reveal the relationship between the somatic and dendritic activity of pyramidal neurons.


2015 ◽  
Author(s):  
Li Lin ◽  
Jun Xia ◽  
Terence T. W. Wong ◽  
Ruiying Zhang ◽  
Lihong V. Wang

2018 ◽  
Vol 11 (4) ◽  
pp. e201700106 ◽  
Author(s):  
M. S. Pochechuev ◽  
I. V. Fedotov ◽  
O. I. Ivashkina ◽  
M. A. Roshchina ◽  
D.V. Meshchankin ◽  
...  
Keyword(s):  

2020 ◽  
Vol 12 (1) ◽  
pp. 162
Author(s):  
Yu-Feng Chien ◽  
Jyun-Yi Lin ◽  
Po-Ting Yeh ◽  
Kuo-Jen Hsu ◽  
Yu-Hsuan Tsai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document