scholarly journals Designing high-performance hypergolic propellants based on materials genome

2020 ◽  
Vol 6 (49) ◽  
pp. eabb1899
Author(s):  
Wen-Li Yuan ◽  
Lei Zhang ◽  
Guo-Hong Tao ◽  
Shuang-Long Wang ◽  
You Wang ◽  
...  

A new generation of rocket propellants for deep space exploration, ionic liquid propellants, with long endurance and high stability, is attracting more and more attention. However, a major defect of ionic liquid propellants that restricts their application is the inadequate hypergolic reactivity between the fuel and the oxidant, and this defect results in local burnout and accidental explosions during the launch process. We propose a visualization model to show the features of structure, density, thermal stability, and hypergolic activity for estimating propellant performances and their application abilities. This propellant materials genome and visualization model greatly improves the efficiency and quality of developing high-performance propellants, which benefits the discovery of new advanced functional molecules in the field of energetic materials.

Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1811
Author(s):  
Valeriia Rostovtseva ◽  
Alexandra Pulyalina ◽  
Roman Dubovenko ◽  
Ilya Faykov ◽  
Kseniya Subbotina ◽  
...  

Modification of polymer matrix by hybrid fillers is a promising way to produce membranes with excellent separation efficiency due to variations in membrane structure. High-performance membranes for the pervaporation dehydration were produced by modifying poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) to facilitate lactic acid purification. Ionic liquid (IL), heteroarm star macromolecules (HSM), and their combination (IL:HSM) were employed as additives to the polymer matrix. The composition and structure of hybrid membranes were characterized by X-ray diffraction and FTIR spectroscopy. Scanning electron microscopy was used to investigate the membranes surface and cross-section morphology. It was established that the inclusion of modifiers in the polymer matrix leads to the change of membrane structure. The influence of IL:HSM was also studied via sorption experiments and pervaporation of water‒lactic acid mixtures. Lactic acid is an essential compound in many industries, including food, pharmaceutical, chemical, while the recovering and purifying account for approximately 50% of its production cost. It was found that the membranes selectively remove water from the feed. Quantum mechanical calculations determine the favorable interactions between various membrane components and the liquid mixture. With IL:HSM addition, the separation factor and performance in lactic acid dehydration were improved compared with pure polymer membrane. The best performance was found for (HSM: IL)-PPO/UPM composite membrane, where the permeate flux and the separation factor of about 0.06 kg m−2 h−1 and 749, respectively, were obtained. The research results demonstrated that ionic liquids in combination with star macromolecules for membrane modification could be a promising approach for membrane design.


2021 ◽  
Vol 412 ◽  
pp. 127034
Author(s):  
Yang Yu ◽  
Zhuoya Ren ◽  
Qianqian Shang ◽  
Jiangang Han ◽  
Lei Li ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 327
Author(s):  
Morwenna J. Spear ◽  
Simon F. Curling ◽  
Athanasios Dimitriou ◽  
Graham A. Ormondroyd

Wood modification is now widely recognized as offering enhanced properties of wood and overcoming issues such as dimensional instability and biodegradability which affect natural wood. Typical wood modification systems use chemical modification, impregnation modification or thermal modification, and these vary in the properties achieved. As control and understanding of the wood modification systems has progressed, further opportunities have arisen to add extra functionalities to the modified wood. These include UV stabilisation, fire retardancy, or enhanced suitability for paints and coatings. Thus, wood may become a multi-functional material through a series of modifications, treatments or reactions, to create a high-performance material with previously impossible properties. In this paper we review systems that combine the well-established wood modification procedures with secondary techniques or modifications to deliver emerging technologies with multi-functionality. The new applications targeted using this additional functionality are diverse and range from increased electrical conductivity, creation of sensors or responsive materials, improvement of wellbeing in the built environment, and enhanced fire and flame protection. We identified two parallel and connected themes: (1) the functionalisation of modified timber and (2) the modification of timber to provide (multi)-functionality. A wide range of nanotechnology concepts have been harnessed by this new generation of wood modifications and wood treatments. As this field is rapidly expanding, we also include within the review trends from current research in order to gauge the state of the art, and likely direction of travel of the industry.


2018 ◽  
Vol 199 ◽  
pp. 09001
Author(s):  
Renaud Franssen ◽  
Serhan Guner ◽  
Luc Courard ◽  
Boyan Mihaylov

The maintenance of large aging infrastructure across the world creates serious technical, environmental, and economic challenges. Ultra-high performance fibre-reinforced concretes (UHPFRC) are a new generation of materials with outstanding mechanical properties as well as very high durability due to their extremely low permeability. These properties open new horizons for the sustainable rehabilitation of aging concrete structures. Since UHPFRC is a young and evolving material, codes are still either lacking or incomplete, with recent design provisions proposed in France, Switzerland, Japan, and Australia. However, engineers and public agencies around the world need resources to study, model, and rehabilitate structures using UHPFRC. As an effort to contribute to the efficient use of this promising material, this paper presents a new numerical modelling approach for UHPFRC-strengthened concrete members. The approach is based on the Diverse Embedment Model within the global framework of the Disturbed Stress Field Model, a smeared rotating-crack formulation for 2D modelling of reinforced concrete structures. This study presents an adapted version of the DEM in order to capture the behaviour of UHPFRC by using a small number of input parameters. The model is validated with tension tests from the literature and is then used to model UHPFRC-strengthened elements. The paper will discuss the formulation of the model and will provide validation studies with various tests of beams, columns and walls from the literature. These studies will demonstrate the effectiveness of the proposed modelling approach.


2016 ◽  
Vol 4 (36) ◽  
pp. 13822-13829 ◽  
Author(s):  
Xiaowei Li ◽  
Sijian Li ◽  
Zhengxi Zhang ◽  
Jun Huang ◽  
Li Yang ◽  
...  

Hybrid ionogel electrolytes have high thermal and electrochemical stability, good ionic conductivity, and potential to suppress Li dendrite formation. Solid-state lithium metal batteries with hybrid electrolytes reveal high capacity and remarkable rate performance.


2014 ◽  
Vol 971-973 ◽  
pp. 143-147 ◽  
Author(s):  
Ping Dai ◽  
Shuang Xiu Li

The development of a new generation of high performance gas turbine engines requires gas turbines to be operated at very high inlet temperatures, which are much higher than the allowable metal temperatures. Consequently, this necessitates the need for advanced cooling techniques. Among the numerous cooling technologies, the film cooling technology has superior advantages and relatively favorable application prospect. The recent research progress of film cooling techniques for gas turbine blade is reviewed and basic principle of film cooling is also illustrated. Progress on rotor blade and stationary blade of film cooling are introduced. Film cooling development of leading-edge was also generalized. Effect of various factor on cooling effectiveness and effect of the shape of the injection holes on plate film cooling are discussed. In addition, with respect to progress of discharge coefficient is presented. In the last, the future development trend and future investigation direction of film cooling are prospected.


Sign in / Sign up

Export Citation Format

Share Document