Development of a high-performance gantry system for a new generation of optical slope measuring profilers

Author(s):  
Lahsen Assoufid ◽  
Nathan Brown ◽  
Dan Crews ◽  
Joseph Sullivan ◽  
Mark Erdmann ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 327
Author(s):  
Morwenna J. Spear ◽  
Simon F. Curling ◽  
Athanasios Dimitriou ◽  
Graham A. Ormondroyd

Wood modification is now widely recognized as offering enhanced properties of wood and overcoming issues such as dimensional instability and biodegradability which affect natural wood. Typical wood modification systems use chemical modification, impregnation modification or thermal modification, and these vary in the properties achieved. As control and understanding of the wood modification systems has progressed, further opportunities have arisen to add extra functionalities to the modified wood. These include UV stabilisation, fire retardancy, or enhanced suitability for paints and coatings. Thus, wood may become a multi-functional material through a series of modifications, treatments or reactions, to create a high-performance material with previously impossible properties. In this paper we review systems that combine the well-established wood modification procedures with secondary techniques or modifications to deliver emerging technologies with multi-functionality. The new applications targeted using this additional functionality are diverse and range from increased electrical conductivity, creation of sensors or responsive materials, improvement of wellbeing in the built environment, and enhanced fire and flame protection. We identified two parallel and connected themes: (1) the functionalisation of modified timber and (2) the modification of timber to provide (multi)-functionality. A wide range of nanotechnology concepts have been harnessed by this new generation of wood modifications and wood treatments. As this field is rapidly expanding, we also include within the review trends from current research in order to gauge the state of the art, and likely direction of travel of the industry.



2018 ◽  
Vol 199 ◽  
pp. 09001
Author(s):  
Renaud Franssen ◽  
Serhan Guner ◽  
Luc Courard ◽  
Boyan Mihaylov

The maintenance of large aging infrastructure across the world creates serious technical, environmental, and economic challenges. Ultra-high performance fibre-reinforced concretes (UHPFRC) are a new generation of materials with outstanding mechanical properties as well as very high durability due to their extremely low permeability. These properties open new horizons for the sustainable rehabilitation of aging concrete structures. Since UHPFRC is a young and evolving material, codes are still either lacking or incomplete, with recent design provisions proposed in France, Switzerland, Japan, and Australia. However, engineers and public agencies around the world need resources to study, model, and rehabilitate structures using UHPFRC. As an effort to contribute to the efficient use of this promising material, this paper presents a new numerical modelling approach for UHPFRC-strengthened concrete members. The approach is based on the Diverse Embedment Model within the global framework of the Disturbed Stress Field Model, a smeared rotating-crack formulation for 2D modelling of reinforced concrete structures. This study presents an adapted version of the DEM in order to capture the behaviour of UHPFRC by using a small number of input parameters. The model is validated with tension tests from the literature and is then used to model UHPFRC-strengthened elements. The paper will discuss the formulation of the model and will provide validation studies with various tests of beams, columns and walls from the literature. These studies will demonstrate the effectiveness of the proposed modelling approach.



2014 ◽  
Vol 971-973 ◽  
pp. 143-147 ◽  
Author(s):  
Ping Dai ◽  
Shuang Xiu Li

The development of a new generation of high performance gas turbine engines requires gas turbines to be operated at very high inlet temperatures, which are much higher than the allowable metal temperatures. Consequently, this necessitates the need for advanced cooling techniques. Among the numerous cooling technologies, the film cooling technology has superior advantages and relatively favorable application prospect. The recent research progress of film cooling techniques for gas turbine blade is reviewed and basic principle of film cooling is also illustrated. Progress on rotor blade and stationary blade of film cooling are introduced. Film cooling development of leading-edge was also generalized. Effect of various factor on cooling effectiveness and effect of the shape of the injection holes on plate film cooling are discussed. In addition, with respect to progress of discharge coefficient is presented. In the last, the future development trend and future investigation direction of film cooling are prospected.



2014 ◽  
Vol 217-218 ◽  
pp. 471-480
Author(s):  
Ivano Gattelli ◽  
Gian Luigi Chiarmetta ◽  
Marcello Boschini ◽  
Renzo Moschini ◽  
Mario Rosso ◽  
...  

This paper concerns with the optimisation of the innovative rheocasting process to produce a new generation of brake callipers, characterised by very high reliability and strength. The attained very promising properties favoured their use on a very high performance car and the presented technique can be further extended for other important challenging applications. The prototype components are produced using T6 heat treated A357 alloy. Results on the samples machined directly from the produced callipers are in detail described and analysed. Pieces exhibiting some small defects, individuated by non-destructive tests, as well as defectless pieces have been underlined to severe industrial tests, e.g. high pressure tight, as well as severe bench tests, and it has been observed that the proposed technological process assure the fulfilment of the requirements contained in standards.



1965 ◽  
Vol 69 (660) ◽  
pp. 835-845 ◽  
Author(s):  
H. C. H. Merewether

With the introduction of each new generation of combat aircraft it has become popular to assume that they will be operated in a more conservative manner than previously and that less attention, therefore, need be paid to their spinning characteristics. Current experience, however, shows that inadvertent spins will continue to occur, and must be allowed for, if these aircraft are to be operated effectively and to the limit of their capability.In this connection the Hunter provides an interesting case history, since it has been put to widescale use in a variety of roles and its erect and inverted spinning characteristics have been thoroughly investigated. These characteristics will be described both for their own sake and because of the applicability which they have to current high performance aircraft.



2013 ◽  
Vol 365-366 ◽  
pp. 917-920
Author(s):  
De Fa Zhang ◽  
Yi Cong Gao

In recent years, industrial sewing machine intelligence can be increased. Compared with the traditional equipment, the new generation of domestic equipment in the "high efficiency, energy saving, special" has realized great-leap-forward development. In the performance, will towards high precision, high efficiency, high performance, intelligent direction; in function, to the miniaturization, multi-function direction; in the program, to the systematic, integrated direction. The design and development of industrial sewing machine digitization design packaging platform are discussed.



2021 ◽  
Author(s):  
Roman Nuterman ◽  
Dion Häfner ◽  
Markus Jochum

<p>Until recently, our pure Python, primitive equation ocean model Veros <br>has been about 1.5x slower than a corresponding Fortran implementation. <br>But thanks to a thriving scientific and machine learning library <br>ecosystem, tremendous speed-ups on GPU, and to a lesser degree CPU, are <br>within reach. Leveraging Google's JAX library, we find that our Python <br>model code can reach a 2-5 times higher energy efficiency on GPU <br>compared to a traditional Fortran model.</p><p>Therefore, we propose a new generation of geophysical models: One that <br>combines high-level abstractions and user friendliness on one hand, and <br>that leverages modern developments in high-performance computing and <br>machine learning research on the other hand.</p><p>We discuss what there is to gain from building models in high-level <br>programming languages, what we have achieved in Veros, and where we see <br>the modelling community heading in the future.</p>



Author(s):  
Alexey Cheptsov ◽  
Stefan Wesner ◽  
Bastian Koller

The modern Semantic Web scenarios require reasoning algorithms to be flexible, modular, and highly-configurable. A solid approach, followed in the design of the most currently existing reasoners, is not sufficient when dealing with today's challenges of data analysis across multiple sources of heterogeneous data or when the data amount grows to the “Big Data” sizes. The “reasoning as a workflow” concept has attracted a lot of attention in the design of new-generation Semantic Web applications, offering a lot of opportunities to improve both flexibility and scalability of the reasoning process. Considering a single workflow component as a service offers a lot of opportunities for a reasoning algorithm to target a much wider range of potentially enabled Semantic Web use cases by taking benefits of a service-oriented and component-based implementation. We introduce a technique for developing service-oriented Semantic Reasoning applications based on the workflow concept. We also present the Large Knowledge Collider - a software platform for developing workflow-based Semantic Web applications, taking advantages of on-demand high performance computing and cloud infrastructures.



2020 ◽  
Vol 858 ◽  
pp. 182-187
Author(s):  
Yu Dong Han ◽  
Zhen Bo Wang ◽  
Zi Jie Hong ◽  
Jian Ping Zuo ◽  
Chang Liu ◽  
...  

The brittleness and easiness to crack expose marine concrete to serious durability issues. Engineered Cementitious Composites (ECC), as a new generation of ultra high performance concrete, is expected to overcome the strain-softening properties of traditional concrete and realize function of crack-width control. In this paper, the sulfate erosion of ECC under drying-wetting cycles was modelled in laboratory test. And the compression test on cylinders after exposure to different erosion cycles was implemented to obtain the stress-strain properties. The results disclose that sulfate erosion imposes significant influence on both the nonlinear ascending and descending portions of the stress-strain properties of ECC. As the erosion period extended, ECC strength undergoes an obvious increase. And the descending section of the eroded ECC shows a significant stress drop, which is quite different from that before erosion. Additionally, a simple analytical model was proposed to provide satisfactory prediction of the stress-strain properties of ECC exposed to sulfate erosion.



2019 ◽  
Vol 3 (4) ◽  
pp. 902-904
Author(s):  
Alexander Peyser ◽  
Sandra Diaz Pier ◽  
Wouter Klijn ◽  
Abigail Morrison ◽  
Jochen Triesch

Large-scale in silico experimentation depends on the generation of connectomes beyond available anatomical structure. We suggest that linking research across the fields of experimental connectomics, theoretical neuroscience, and high-performance computing can enable a new generation of models bridging the gap between biophysical detail and global function. This Focus Feature on ”Linking Experimental and Computational Connectomics” aims to bring together some examples from these domains as a step toward the development of more comprehensive generative models of multiscale connectomes.



Sign in / Sign up

Export Citation Format

Share Document