scholarly journals Direct dating of lithic surface artifacts using luminescence

2021 ◽  
Vol 7 (23) ◽  
pp. eabb3424
Author(s):  
Luke Andrew Gliganic ◽  
Michael Christian Meyer ◽  
Jan-Hendrik May ◽  
Mark Steven Aldenderfer ◽  
Peter Tropper

Archaeological surface assemblages composed of lithic scatters comprise a large proportion of the archaeological record. Dating such surface artifacts has remained inherently difficult owing to the dynamic nature of Earth-surface processes affecting these assemblages and because no satisfactory chronometric dating technique exists that can be directly applied to constrain the timing of artifact manufacture, discard, and thus human use of the landscape. Here, we present a dating approach based on optically stimulated luminescence (OSL)—OSL rock-surface burial dating—and apply it to a lithic surface scatter in Tibet. We generate OSL burial ages (age-depth profiles) for each artifact, outline the methodological complexities, and consider the artifact burial ages in the context of local-scale Earth-surface dynamics. The oldest age cluster between 5.2 and 5.5 thousand years is likely related to quarrying activities at the site and thus represents the oldest chronometric age constraints for human presence on the south-central Tibetan plateau.

2018 ◽  
Author(s):  
Nathan J. Lyons ◽  
◽  
Christina Bandaragoda ◽  
Katherine R. Barnhart ◽  
Nicole M. Gasparini ◽  
...  

2019 ◽  
Vol 92 (1) ◽  
pp. 70-80 ◽  
Author(s):  
Tom D. Dillehay ◽  
Carlos Ocampo ◽  
Jose Saavedra ◽  
Mario Pino ◽  
Linda Scott-Cummings ◽  
...  

AbstractThis paper presents new excavation data on the Chinchihuapi I (CH-I) locality within the Monte Verde site complex, located along Chinchihuapi Creek in the cool, temperate Valdivian rain forest of south-central Chile. The 2017 and 2018 archaeological excavations carried out in this open-air locality reveal further that CH-I is an intermittently occupied site dating from the Early Holocene (~10,000 cal yr BP) to the late Pleistocene (at least ~14,500 cal yr BP) and probably earlier. A new series of radiocarbon dates refines the chronology of human use of the site during this period. In this paper, we describe the archaeological and stratigraphic contexts of the recent excavations and analyze the recovered artifact assemblages. A fragmented Monte Verde II point type on an exotic quartz newly recovered from excavations at CH-I indicates that this biface design existed in at least two areas of the wider site complex ~14,500 cal yr BP. In addition, associated with the early Holocene component at CH-I are later Paijan-like points recovered with lithic tools and debris and other materials. We discuss the geographic distribution of diagnostic artifacts from the site and their probable relationship to other early sites in South America.


2016 ◽  
Author(s):  
Andrew Valentine ◽  
Lara Kalnins

Abstract. "Learning algorithms" are a class of computational tool designed to infer information from a dataset, and then apply that information predictively. They are particularly well-suited to complex pattern recognition, or to situations where a mathematical relationship needs to be modelled, but where the underlying processes are not well-understood, are too expensive to compute, or where signals are over-printed by other effects. If a representative set of examples of the relationship can be constructed, a learning algorithm can assimilate its behaviour, and may then serve as an efficient, approximate computational implementation thereof. A wide range of applications in geomorphometry and earth surface dynamics may be envisaged, ranging from classification of landforms through to prediction of erosion characteristics given input forces. Here, we provide a practical overview of the various approaches that lie within this general framework, review existing uses in geomorphology and related applications, and discuss some of the factors that determine whether a learning algorithm approach is suited to any given problem.


2020 ◽  
Vol 248 ◽  
pp. 106475
Author(s):  
Tara N. Jonell ◽  
Jonathan C. Aitchison ◽  
Guoqiang Li ◽  
James Shulmeister ◽  
Renjie Zhou ◽  
...  

2020 ◽  
Vol 1 (2) ◽  
Author(s):  
SATYA SUNDAR BHATTACHARYA ◽  
Subhasish Das

Nanomaterials (NMs) have become an integral part of our daily life and their extensive uproduction will only increase with the coming time. These NMs exhibit significant contrast in regard to dimension, reaction, and structure. The most important aspect of the NMs is that these can be easily manipulated and engineered to custom-suit different functions/industries. Owing totheir dynamic nature, these NMs behave differently when introduced in any medium. In soil, the behavior of NMs is significantly controlled by the interactions of nanomaterials with soil phases. Although, NMs are deemed beneficial for human-use yet these also carry lethal effects. Moreover, there is dearth of adequate research with respect to the interactions amongnanomaterials and soil physicochemical properties; their accumulation-dissolution dynamics in soil-plant systems; and their long term influence on soil health. Several NMs induce physiological stress when introduced inside the body. Thus, various researchers have devised green pathways for producing NMs, although their wide applicability is still questionable. Although the domain of nanotechnology is greatly explored yet there remain several grey areaswhich need to be addressed for sustainable utilization of these unique materials in the benefit of humankind.


Sign in / Sign up

Export Citation Format

Share Document