scholarly journals Transcriptional suppression of ribosomal DNA with phase separation

2020 ◽  
Vol 6 (42) ◽  
pp. eabb5953
Author(s):  
Satoru Ide ◽  
Ryosuke Imai ◽  
Hiroko Ochi ◽  
Kazuhiro Maeshima

The nucleolus is a nuclear body with multiphase liquid droplets for ribosomal RNA (rRNA) transcription. How rRNA transcription is regulated in the droplets remains unclear. Here, using single-molecule tracking of RNA polymerase I (Pol I) and chromatin-bound upstream binding factor (UBF), we reveal suppression of transcription with phase separation. For transcription, active Pol I formed small clusters/condensates that constrained rDNA chromatin in the nucleolus fibrillar center (FC). Treatment with a transcription inhibitor induced Pol I to dissociate from rDNA chromatin and to move like a liquid within the nucleolar cap that transformed from the FC. Expression of a Pol I mutant associated with a craniofacial disorder inhibited transcription by competing with wild-type Pol I clusters and transforming the FC into the nucleolar cap. The cap droplet excluded an initiation factor, ensuring robust silencing. Our findings suggest a mechanism of rRNA transcription suppression via phase separation of intranucleolar molecules governed by Pol I.

2015 ◽  
Vol 210 (4) ◽  
pp. 527-528 ◽  
Author(s):  
Edward Courchaine ◽  
Karla M. Neugebauer

Low-complexity proteins undergo phase separation in vitro, forming hydrogels or liquid droplets. Whether these form in vivo, and under what conditions, is still unclear. In this issue, Hennig et al. (2015. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201504117) show that formation of the paraspeckle, a nuclear body that regulates gene expression, requires low-complexity prion-like domains (PLDs) within paraspeckle proteins. The same proteins were shown to form hydrogels, shedding light on the role of “functional aggregation” in nuclear substructure.


2020 ◽  
Vol 31 (18) ◽  
pp. 2048-2056 ◽  
Author(s):  
Huaiying Zhang ◽  
Rongwei Zhao ◽  
Jason Tones ◽  
Michel Liu ◽  
Robert L. Dilley ◽  
...  

A chemical dimerization approach is developed to induce phase separation of APB nuclear bodies involved in telomere elongation in alternative lengthening of telomeres (ALT) cancer cells. It reveals that ALT telomere-associated promyelocytic leukemia nuclear body (APB) fusion leads to telomere clustering to provide templates for homology-directed telomere synthesis, an ability that is decoupled from APB function in enriching DNA repair factors.


2005 ◽  
Vol 25 (21) ◽  
pp. 9269-9282 ◽  
Author(s):  
Simon Lebaron ◽  
Carine Froment ◽  
Micheline Fromont-Racine ◽  
Jean-Christophe Rain ◽  
Bernard Monsarrat ◽  
...  

ABSTRACT Prp43p is a putative helicase of the DEAH family which is required for the release of the lariat intron from the spliceosome. Prp43p could also play a role in ribosome synthesis, since it accumulates in the nucleolus. Consistent with this hypothesis, we find that depletion of Prp43p leads to accumulation of 35S pre-rRNA and strongly reduces levels of all downstream pre-rRNA processing intermediates. As a result, the steady-state levels of mature rRNAs are greatly diminished following Prp43p depletion. We present data arguing that such effects are unlikely to be solely due to splicing defects. Moreover, we demonstrate by a combination of a comprehensive two-hybrid screen, tandem-affinity purification followed by mass spectrometry, and Northern analyses that Prp43p is associated with 90S, pre-60S, and pre-40S ribosomal particles. Prp43p seems preferentially associated with Pfa1p, a novel specific component of pre-40S ribosomal particles. In addition, Prp43p interacts with components of the RNA polymerase I (Pol I) transcription machinery and with mature 18S and 25S rRNAs. Hence, Prp43p might be delivered to nascent 90S ribosomal particles during pre-rRNA transcription and remain associated with preribosomal particles until their final maturation steps in the cytoplasm. Our data also suggest that the ATPase activity of Prp43p is required for early steps of pre-rRNA processing and normal accumulation of mature rRNAs.


2017 ◽  
Author(s):  
Wei Lin ◽  
Kalyan Das ◽  
David Degen ◽  
Abhishek Mazumder ◽  
Diego Duchi ◽  
...  

Fidaxomicin is an antibacterial drug in clinical use in treatment ofClostridium difficilediarrhea1–2. The active pharmaceutical ingredient of fidaxomicin, lipiarmycin A3 (Lpm)1–4, is a macrocyclic antibiotic with bactericidal activity against Gram-positive bacteria and efflux-deficient strains of Gram-negative bacteria1–2, 5. Lpm functions by inhibiting bacterial RNA polymerase (RNAP)6–8. Lpm exhibits no cross-resistance with the classic RNAP inhibitor rifampin (Rif)7, 9and inhibits transcription initiation at an earlier step than Rif8–11, suggesting that the binding site and mechanism of Lpm differ from those of Rif. Efforts spanning a decade to obtain a crystal structure of RNAP in complex with Lpm have been unsuccessful. Here, we report a cryo-EM12–13structure ofMycobacterium tuberculosisRNAP holoenzyme in complex with Lpm at 3.5 Å resolution. The structure shows that Lpm binds at the base of the RNAP “clamp,” interacting with the RNAP switch region and the RNAP RNA exit channel. The binding site on RNAP for Lpm does not overlap the binding sites for other RNAP inhibitors, accounting for the absence of cross-resistance of Lpm with other RNAP inhibitors. The structure exhibits an open conformation of the RNAP clamp, with the RNAP clamp swung outward by ~17° relative to its position in catalytically competent RNAP-promoter transcription initiation complexes, suggesting that Lpm traps an open-clamp conformational state. Single-molecule fluorescence resonance energy transfer14experiments confirm that Lpm traps an open-clamp conformational state and define effects of Lpm on clamp opening and closing dynamics. We propose that Lpm inhibits transcription initiation by trapping an open-clamp conformational state, thereby preventing simultaneous engagement of transcription initiation factor σ regions 2 and 4 with promoter -10 and -35 elements. The results provide information essential to understanding the mode of action of Lpm, account for structure-activity relationships of known Lpm analogs, and suggest modifications to Lpm that could yield new, improved Lpm analogs.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Madeline M Keenen ◽  
David Brown ◽  
Lucy D Brennan ◽  
Roman Renger ◽  
Harrison Khoo ◽  
...  

In mammals, HP1-mediated heterochromatin forms positionally and mechanically stable genomic domains even though the component HP1 paralogs, HP1α, HP1β, and HP1γ, display rapid on-off dynamics. Here, we investigate whether phase-separation by HP1 proteins can explain these biological observations. Using bulk and single-molecule methods, we show that, within phase-separated HP1α-DNA condensates, HP1α acts as a dynamic liquid, while compacted DNA molecules are constrained in local territories. These condensates are resistant to large forces yet can be readily dissolved by HP1β. Finally, we find that differences in each HP1 paralog’s DNA compaction and phase-separation properties arise from their respective disordered regions. Our findings suggest a generalizable model for genome organization in which a pool of weakly bound proteins collectively capitalize on the polymer properties of DNA to produce self-organizing domains that are simultaneously resistant to large forces at the mesoscale and susceptible to competition at the molecular scale.


1988 ◽  
Vol 8 (5) ◽  
pp. 1940-1946
Author(s):  
E Bateman ◽  
M R Paule

Chemical footprinting and topological analysis were carried out on the Acanthamoeba castellanii rRNA transcription initiation factor (TIF) and RNA polymerase I complexes with DNA during transcription initiation and elongation. The results show that the binding of TIF and polymerase to the promoter does not alter the supercoiling of the DNA template and the template does not become sensitive to modification by diethylpyrocarbonate, which can identify melted DNA regions. Thus, in contrast to bacterial RNA polymerase, the eucaryotic RNA polymerase I-promoter complex is in a closed configuration preceding addition of nucleotides in vitro. Initiation and 3'-O-methyl CTP-limited translocation by RNA polymerase I results in separation of the polymerase-TIF footprints, leaving the TIF footprint unaltered. In contrast, initiation and translocation result in a significant change in the conformation of the polymerase-DNA complex, culminating in an unwound DNA region of at least 10 base pairs.


2020 ◽  
Vol 117 (27) ◽  
pp. 15650-15658 ◽  
Author(s):  
Ibraheem Alshareedah ◽  
Mahdi Muhammad Moosa ◽  
Muralikrishna Raju ◽  
Davit A. Potoyan ◽  
Priya R. Banerjee

Liquid−liquid phase separation of multivalent intrinsically disordered protein−RNA complexes is ubiquitous in both natural and biomimetic systems. So far, isotropic liquid droplets are the most commonly observed topology of RNA−protein condensates in experiments and simulations. Here, by systematically studying the phase behavior of RNA−protein complexes across varied mixture compositions, we report a hollow vesicle-like condensate phase of nucleoprotein assemblies that is distinct from RNA−protein droplets. We show that these vesicular condensates are stable at specific mixture compositions and concentration regimes within the phase diagram and are formed through the phase separation of anisotropic protein−RNA complexes. Similar to membranes composed of amphiphilic lipids, these nucleoprotein−RNA vesicular membranes exhibit local ordering, size-dependent permeability, and selective encapsulation capacity without sacrificing their dynamic formation and dissolution in response to physicochemical stimuli. Our findings suggest that protein−RNA complexes can robustly create lipid-free vesicle-like enclosures by phase separation.


2020 ◽  
Vol 56 (78) ◽  
pp. 11577-11580
Author(s):  
Rosario Oliva ◽  
Sanjib K. Mukherjee ◽  
Zamira Fetahaj ◽  
Simone Möbitz ◽  
Roland Winter

Protein/RNA droplet formation by liquid–liquid phase separation has emerged as a key mechanism for cellular organization. We show that binding of antimicrobial peptides such as LL-III can lead to loss of droplet function.


2019 ◽  
Vol 116 (33) ◽  
pp. 16326-16331 ◽  
Author(s):  
Florian Heinkel ◽  
Libin Abraham ◽  
Mary Ko ◽  
Joseph Chao ◽  
Horacio Bach ◽  
...  

Phase separation drives numerous cellular processes, ranging from the formation of membrane-less organelles to the cooperative assembly of signaling proteins. Features such as multivalency and intrinsic disorder that enable condensate formation are found not only in cytosolic and nuclear proteins, but also in membrane-associated proteins. The ABC transporter Rv1747, which is important for Mycobacterium tuberculosis (Mtb) growth in infected hosts, has a cytoplasmic regulatory module consisting of 2 phosphothreonine-binding Forkhead-associated domains joined by an intrinsically disordered linker with multiple phospho-acceptor threonines. Here we demonstrate that the regulatory modules of Rv1747 and its homolog in Mycobacterium smegmatis form liquid-like condensates as a function of concentration and phosphorylation. The serine/threonine kinases and sole phosphatase of Mtb tune phosphorylation-enhanced phase separation and differentially colocalize with the resulting condensates. The Rv1747 regulatory module also phase-separates on supported lipid bilayers and forms dynamic foci when expressed heterologously in live yeast and M. smegmatis cells. Consistent with these observations, single-molecule localization microscopy reveals that the endogenous Mtb transporter forms higher-order clusters within the Mycobacterium membrane. Collectively, these data suggest a key role for phase separation in the function of these mycobacterial ABC transporters and their regulation via intracellular signaling.


Sign in / Sign up

Export Citation Format

Share Document