scholarly journals Paraspeckles: Paragons of functional aggregation

2015 ◽  
Vol 210 (4) ◽  
pp. 527-528 ◽  
Author(s):  
Edward Courchaine ◽  
Karla M. Neugebauer

Low-complexity proteins undergo phase separation in vitro, forming hydrogels or liquid droplets. Whether these form in vivo, and under what conditions, is still unclear. In this issue, Hennig et al. (2015. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201504117) show that formation of the paraspeckle, a nuclear body that regulates gene expression, requires low-complexity prion-like domains (PLDs) within paraspeckle proteins. The same proteins were shown to form hydrogels, shedding light on the role of “functional aggregation” in nuclear substructure.

2019 ◽  
Author(s):  
Jiahua Wang ◽  
Liyong Wang ◽  
Jianbo Diao ◽  
Yujiang Geno Shi ◽  
Yang Shi ◽  
...  

AbstractAs the most abundant modification on mRNA in mammal, N6-Methyladenosine (m6A) has been demonstrated to play important roles in various biological processes including mRNA splicing, translation and degradation. m6A reader proteins have been shown to play central roles in these processes. One of the m6A readers, YTHDF2 is localized to the P granules, which are liquid-like droplets where RNA degradation occurs. How YTHDF2 is localized to P granules is unknown. Here we provide evidence that YTHDF2 forms liquid droplets and phase separate, mediated by its low complexity (LC) domains. Interestingly, the ability to phase separate is robustly stimulated by m6A RNAs in vitro. In vivo, YTHDF2 phase separation may in fact be dependent on m6A RNA and YTHDF2 binding to m6A RNA, since a YTHDF2 m6A-binding defective mutant or a wildtype YTHDF2 assayed in cells lacking m6A RNAs, both fail to phase separate. The ability of phase separate is not limited to YTHDF2; we find other members of the YTH-domain m6A readers can also undergo phase separation. Our findings suggest that m6A RNA induced phase separation of m6A readers may play an important role in their distributions to different phase-separated compartments in cells.


Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 915
Author(s):  
Jazelli Mueterthies ◽  
Davit A. Potoyan

Proteins with low complexity, disordered sequences are receiving increasing attention due to their central roles in the biogenesis and regulation of membraneless organelles. In eukaryotic organisms, a substantial fraction of disordered proteins reside in the nucleus, thereby facilitating the formation of nuclear bodies, nucleolus, and chromatin compartmentalization. The heterochromatin family of proteins (HP1) is an important player in driving the formation of gene silenced mesoscopic heterochromatin B compartments and pericentric regions. Recent experiments have shown that the HP1a sequence of Drosophila melanogaster can undergo liquid-liquid phase separation under both in vitro and in vivo conditions, induced by changes of the monovalent salt concentration. While the phase separation of HP1a is thought to be the mechanism underlying chromatin compartmentalization, the molecular level mechanistic picture of salt-driven phase separation of HP1a has remained poorly understood. The disordered hinge region of HP1a is seen as the driver of salt-induced condensation because of its charge enriched sequence and post-translational modifications. Here, we set out to decipher the mechanisms of salt-induced condensation of HP1a through a systematic study of salt-dependent conformations of single chains and fuzzy dimers of disordered HP1a hinge sequences. Using multiple independent all-atom simulations with and without enhanced sampling, we carry out detailed characterization of conformational ensembles of disordered HP1a chains under different ionic conditions using various polymeric and structural measures. We show that the mobile ion release, enhancement of local transient secondary structural elements, and side-chain exposure to solvent are robust trends that accompany fuzzy dimer formation. Furthermore, we find that salt-induced changes in the ensemble of conformations of HP1a disordered hinge sequence fine-tune the inter-chain vs. self-chain interactions in ways that favor fuzzy dimer formation under low salt conditions in the agreement with condensation trends seen in experiments.


Viruses ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 650 ◽  
Author(s):  
Wlaa Assi ◽  
Tomoya Hirose ◽  
Satoshi Wada ◽  
Ryosuke Matsuura ◽  
Shin-nosuke Takeshima ◽  
...  

Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis, which is the most common neoplastic disease of cattle and is closely related to human T-cell leukemia viruses. We investigated the role of a new host protein, PRMT5, in BLV infection. We found that PRMT5 is overexpressed only in BLV-infected cattle with a high proviral load, but not in those with a low proviral load. Furthermore, this upregulation continued to the lymphoma stage. PRMT5 expression was upregulated in response to experimental BLV infection; moreover, PRMT5 upregulation began in an early stage of BLV infection rather than after a long period of proviral latency. Second, siRNA-mediated PRMT5 knockdown enhanced BLV gene expression at the transcript and protein levels. Additionally, a selective small-molecule inhibitor of PRMT5 (CMP5) enhanced BLV gene expression. Interestingly, CMP5 treatment, but not siRNA knockdown, altered the gp51 glycosylation pattern and increased the molecular weight of gp51, thereby decreasing BLV-induced syncytium formation. This was supported by the observation that CMP5 treatment enhanced the formation of the complex type of N-glycan more than the high mannose type. In conclusion, PRMT5 overexpression is related to the development of BLV infection with a high proviral load and lymphoma stage and PRMT5 inhibition enhances BLV gene expression. This is the first study to investigate the role of PRMT5 in BLV infection in vivo and in vitro and to reveal a novel function for a small-molecule compound in BLV-gp51 glycosylation processing.


2014 ◽  
Vol 32 (4_suppl) ◽  
pp. 74-74
Author(s):  
Yoshiaki Yamamoto ◽  
Yohann Loriot ◽  
Eliana Beraldi ◽  
Tianyuan Zhou ◽  
Youngsoo Kim ◽  
...  

74 Background: While recent reports link androgen receptor (AR) variants (AR-Vs) to castration resistant prostate cancer (CRPC), the biological significance of AR-Vs in AR-regulated cell survival and proliferation, independent of AR full length (AR-FL), remains controversial. To define the functional role of AR-FL and AR-Vs in MDV3100-resistant (MDV-R), we designed antisense oligonucleotide (ASO) targeting exon 1 and exon 8 in AR to knockdown AR-FL alone or in combination with AR-Vs and examined these effects in MDV-R LNCaP-derived cells in vitro and in vivo. Methods: We generated by selection MDV-R LNCaP-derived sub-lines that uniformly expressed high levels of both AR-FL and AR-V7 compared to CRPC LNCaP xenografts. Cell growth rates, protein and gene expression were analyzed using crystal violet assay, western blotting and real-time PCR, respectively. Exon 1 and 8 AR-ASO were evaluated in MDV-R49F CRPC LNCaP xenografts. Results: AR-V7 was transiently transfected in MDV-R49F cells and differential knockdown of AR-V7 and/or AR-FL by exon 1 versus exon 8 AR-ASO was used to evaluate relative biologic contributions of AR-FL versus AR-V7 in MDV-R LNCaP AR-V7 overexpressing cells. Exon 1 and 8 AR-ASO treatment in these cells similarly decreased prostate-specific antigen (PSA) expression and induced apoptosis as measured by caspase-3 and PARP cleavage and cell growth inhibition. To further define the functional role of AR-Vs in MDV-R LNCaP cells, we used a CE3 siRNA that specifically silenced AR-V7, but not AR-FL in MDV-R LNCaP cells. AR-V7 knockdown did not decrease PSA levels, did not induce apoptosis, and did not inhibit cell growth. In MDV-R LNCaP cells, exon 1 and 8 ASO similarly suppressed cell growth and AR-regulated gene expression in vitro and in vivo. Conclusions: These results indicate that the AR remains an important driver of MDV3100 resistance and, the biologic consequences mainly driven by AR-FL in MDV-R LNCaP models.


2005 ◽  
Vol 441 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Paul Gallagher ◽  
Yongde Bao ◽  
Solange M.T. Serrano ◽  
Gavin D. Laing ◽  
R. David G. Theakston ◽  
...  

Shock ◽  
2000 ◽  
Vol 14 (3) ◽  
pp. 361-365 ◽  
Author(s):  
Shubing Liu ◽  
Neil A. Salyapongse ◽  
David A. Geller ◽  
Yoram Vodovotz ◽  
Timothy R. Billiar

2016 ◽  
Vol 62 (2) ◽  
pp. 134-140
Author(s):  
A.V. Smirnova ◽  
V.N. Sukhorukov ◽  
V.P. Karagodin ◽  
A.N. Orekhov

MicroRNAs (miRNAs) are small (~22 nucleotides in length) noncoding RNA sequences regulating gene expression at posttranscriptional level. MicroRNAs bind complementarily to certain mRNA and cause gene silencing. The involvement of miRNAs in the regulation of lipid metabolism, inflammatory response, cell cycle progression and proliferation, oxidative stress, platelet activation, endothelial and vascular smooth muscle cells (VSMC) function, angiogenesis and plaque formation and rapture indicates important roles in the initiation and progression of atherosclerosis. The key role of microRNAs in pathophysiology of cardiovascular diseases (CVDs), including atherosclerosis, was demonstrated in recent studies. Creating antisense oligonucleotides is a novel technique for selective changes in gene expression both in vitro and in vivo. In this review, we draw attention to the role of miRNAs in atherosclerosis progression, using miRNA as the potential biomarkers and targets in the CVDs, as well as possible application of antisense oligonucleotides


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1051-1051
Author(s):  
Vikas Madan ◽  
Lin Han ◽  
Norimichi Hattori ◽  
Anand Mayakonda ◽  
Qiao-Yang Sun ◽  
...  

Abstract Chromosomal translocation t(8;21) (q22;q22) leading to generation of oncogenic RUNX1-RUNX1T1 fusion is a cytogenetic abnormality observed in about 10% of acute myelogenous leukemia (AML). Studies in animal models and recent next generation sequencing approaches have suggested cooperativity of secondary genetic lesions with t(8;21) in inducing leukemogenesis. In this study, we used targeted and whole exome sequencing of 93 cases (including 30 with matched relapse samples) to profile the mutational landscape of t(8;21) AML at initial diagnosis and post-therapy relapse. We identified recurrent mutations of KIT, TET2, MGA, FLT3, NRAS, DHX15, ASXL1 and KMT2Dgenes in this subtype of AML. In addition, high frequency of truncating alterations in ASXL2 gene (19%) also occurred in our cohort. ASXL2 is a member of mammalian ASXL family involved in epigenetic regulation through recruitment of polycomb or trithorax complexes. Unlike its closely related homolog ASXL1, which is mutated in several hematological malignancies including AML, MDS, MPN and others; mutations of ASXL2 occur specifically in t(8;21) AML. We observed that lentiviral shRNA-mediated silencing of ASXL2 impaired in vitro differentiation of t(8;21) AML cell line, Kasumi-1, and enhanced its colony forming ability. Gene expression analysis uncovered dysregulated expression of several key hematopoiesis genes such as IKZF2, JAG1, TAL1 and ARID5B in ASXL2 knockdown Kasumi-1 cells. Further, to investigate implications of loss of ASXL2 in vivo, we examined hematopoiesis in Asxl2 deficient mice. We observed an age-dependent increase in white blood cell count in the peripheral blood of Asxl2 KO mice. Myeloid progenitors from Asxl2 deficient mice possessed higher re-plating ability and displayed altered differentiation potential in vitro. Flow cytometric analysis of >1 year old mice revealed increased proportion of Lin-Sca1+Kit+ (LSK) cells in the bone marrow of Asxl2 deficient mice, while the overall bone marrow cellularity was significantly reduced. In vivo 5-bromo-2'-deoxyuridine incorporation assay showed increased cycling of LSK cells in mice lacking Asxl2. Asxl2 deficiency also led to perturbed maturation of myeloid and erythroid precursors in the bone marrow, which resulted in altered proportions of mature myeloid populations in spleen and peripheral blood. Further, splenomegaly was observed in old ASXL2 KO mice and histological and flow cytometric examination of ASXL2 deficient spleens demonstrated increased extramedullary hematopoiesis and myeloproliferation compared with the wild-type controls. Surprisingly, loss of ASXL2 also led to impaired T cell development as indicated by severe block in maturation of CD4-CD8- double negative (DN) population in mice >1 year old. These findings established a critical role of Asxl2 in maintaining steady state hematopoiesis. To gain mechanistic insights into its role during hematopoietic differentiation, we investigated changes in histone marks and gene expression affected by loss of Asxl2. Whole transcriptome sequencing of LSK population revealed dysregulated expression of key myeloid-specific genes including Mpo, Ltf, Ngp Ctsg, Camp and Csf1rin cells lacking Asxl2 compared to wild-type control. Asxl2 deficiency also caused changes in histone modifications, specifically H3K27 trimethylation levels were decreased and H2AK119 ubiquitination levels were increased in Asxl2 KO bone marrow cells. Global changes in histone marks in control and Asxl2 deficient mice are being investigated using ChIP-Sequencing. Finally, to examine cooperativity between the loss of Asxl2 and RUNX1-RUNX1T1 in leukemogenesis, KO and wild-type fetal liver cells were transduced with retrovirus expressing AML1-ETO 9a oncogene and transplanted into irradiated recipient mice, the results of this ongoing study will be discussed. Overall, our sequencing studies have identified ASXL2 as a gene frequently altered in t(8;21) AML. Functional studies in mouse model reveal that loss of ASXL2 causes defects in hematopoietic differentiation and leads to myeloproliferation, suggesting an essential role of ASXL2 in normal and malignant hematopoiesis. *LH and NH contributed equally Disclosures Ogawa: Takeda Pharmaceuticals: Consultancy, Research Funding; Sumitomo Dainippon Pharma: Research Funding; Kan research institute: Consultancy, Research Funding.


2018 ◽  
Author(s):  
Ruchika Sachdev ◽  
Maria Hondele ◽  
Miriam Linsenmeier ◽  
Pascal Vallotton ◽  
Christopher F. Mugler ◽  
...  

AbstractProcessing bodies (PBs) are cytoplasmic mRNP granules that assemble via liquid-liquid phase separation and are implicated in the decay or storage of mRNAs. How PB assembly is regulated in cells remains unclear. We recently identified the ATPase activity of the DEAD-box protein Dhh1 as a key regulator of PB dynamics and demonstrated that Not1, an activator of the Dhh1 ATPase and member of the CCR4-NOT deadenylase complex inhibits PB assembly in vivo [Mugler et al., 2016]. Here, we show that the PB component Pat1 antagonizes Not1 and promotes PB assembly via its direct interaction with Dhh1. Intriguingly, in vivo PB dynamics can be recapitulated in vitro, since Pat1 enhances the phase separation of Dhh1 and RNA into liquid droplets, whereas Not1 reverses Pat1-Dhh1-RNA condensation. Overall, our results uncover a function of Pat1 in promoting the multimerization of Dhh1 on mRNA, thereby aiding the assembly of large multivalent mRNP granules that are PBs.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 610-610
Author(s):  
Etienne Danis ◽  
Taylor Yamauchi ◽  
Kristen Echanique ◽  
Jessica Haladyna ◽  
Huafeng Xie ◽  
...  

Abstract Polycomb Repressive Complex 2 (PRC2) is a multi-protein complex with important roles in development and cancer. Both hyper- and hypoactivity of PRC2 are associated with blood-related malignancies. Activating mutations of the PRC2 methyltransferase EZH2 have been found in human B-lineage lymphomas. Inactivating mutations of PRC2 components EZH2, EED and SUZ12 have been described in early T-cell Precursor ALL (ETP-ALL) and inactivating PRC2-alterations are found in Myelodysplastic and Myeloproliferative Syndromes. The mechanisms underlying this paradox are incompletely understood. We here investigate the context dependent role of PRC2 in murine models. We initially studied PRC2 in normal hematopoiesis: Chip-seq analysis of the PRC2-mediated H3K27me3 chromatin mark demonstrates that many genes highly expressed in immature hematopoiesis gain H3K27me3 in the developmental transition from more immature Lin-Sca1+Kit+ (LSK) cells to lineage committed Granulocyte Macrophage Progenitors (GMPs). Transcription of these genes is enriched in EZH2ko GMP compared to EZH2ffGMP by Gene Set Enrichment Analysis (GSEA). These data suggest that PRC2 is important for the silencing of immature gene expression programs in the developmental transition from LSK to GMP. We next analyzed the role of PRC2 in two murine models of acute leukemia: MLL-AF9 driven leukemia, and a model of early T-cell precursor T-ALL (ETP-ALL). In MLL-AF9 leukemia, we previously found that inactivation of Eed completely abrogate leukemogenesis in vitro and in vivo. We now report that genetic inactivation of the tumor suppressor Cdkn2a (a canonical PRC2 target) partially rescued MLL-AF9 mediated leukemia in vitro and in vivo. However, Cdkn2akoEEDko MLL-AF9 leukemia remained compromised. In vitro growth was reduced to approximately 10% of Eedff controls. While control MLL-AF9 leukemia developed in vivo in 100% of the recipients, Cdkn2akoEEDkoMLL-AF9 leukemia developed with significantly prolonged latency and incomplete penetrance (25%). RNAseq analysis revealed that high level expression of genes with established roles in MLL-AF9 leukemia such as HoxA9, Cdk6 and Jmjd1c unexpectedly depends on Eed. These data are in keeping with the absence of alterations in PRC2-components in human MLL-rearranged leukemia. In contrast, PRC2 core components (EZH2/EED/SUZ12) are deleted or mutated in > 40% of ETP-ALL. ETP-ALL also often has direct or indirect activation of the RAS-pathway, and carries frequent deletions of the CDKN2A locus. To model the effects of EED and EZH2-inactivation in ETP-ALL, we established Cdkn2akoEedff vs Cdkn2akoEedko, and Cdkn2akoEzh2ff vs Cdkn2akoEZH2koleukemias by transduction with NRASQ61K followed by expansion on OP9DL1 stroma cells to activate T-lineage differentiation via Notch-signaling. Cdkn2ako NRASQ61K leukemia showed an immunophenotype similar to human ETP-ALL (positive for c-Kit, CD5 and myeloid markers and mostly negative for CD4/8). Inactivation of Eed or Ezh2 in this model led to a shortening of latency (p=0.03 for Eed, p=0.0001 for Ezh2). RNAseq revealed enrichment of genes associated with murine DN1 thymocytes and with human ETP-ALL in Eedko vs Eedff Cdkn2ako NRASQ61K leukemia. These genesets showed even more pronounced enrichment in Ezh2kocompared to Ezh2ff Cdkn2ako NRASQ61K leukemia. Genes highly expressed in early hematopoiesis were enriched in Eedko and Ezh2ko cells in both, the MLL-AF9 and NRASQ61K leukemia models. However, there was an opposing effect on HoxA9 gene expression, with PRC2 inactivation leading to decreased HoxA9 expression in MLL-AF9, and increased HoxA9 expression in Cdkn2ako NRASQ61K leukemia. Decreased HoxA9 has been shown to impair MLL-AF9 leukemia growth. To test the functional significance of elevated HoxA9-levels in the Eedko and EZH2koNRASQ61K leukemias, we co-expressed HoxA9 and NRASQ61K in the presence of intact Eed and Ezh2 loci. Preliminary data suggest that HoxA9 accelerates leukemia development in this setting. Alterations in chromatin modifiers, including PRC2, are frequent in leukemia and lymphoma. Our data demonstrate that manipulation of PRC2 can have opposite effects on leukemia phenotype and expression of key PRC2-repressed genes such as HoxA9 in the context of different tumors. We are currently characterizing the mechanisms leading to divergent outcomes of PRC2 manipulation in MLL-AF9 leukemia compared to NRASQ61K ETP-like leukemia. Disclosures Armstrong: Epizyme : Consultancy.


Sign in / Sign up

Export Citation Format

Share Document