scholarly journals Photoreduction of inorganic carbon(+IV) by elemental sulfur: Implications for prebiotic synthesis in terrestrial hot springs

2020 ◽  
Vol 6 (47) ◽  
pp. eabc3687
Author(s):  
Yanzhang Li ◽  
Yan Li ◽  
Yi Liu ◽  
Yifu Wu ◽  
Junqi Wu ◽  
...  

Terrestrial hydrothermal systems have been proposed as alternative birthplaces for early life but lacked reasonable scenarios for the supply of biomolecules. Here, we show that elemental sulfur (S0), as the dominant mineral in terrestrial hot springs, can reduce carbon dioxide (CO2) into formic acid (HCOOH) under ultraviolet (UV) light below 280 nm. The semiconducting S0 is indicated to have a direct bandgap of 4.4 eV. The UV-excited S0 produces photoelectrons with a highly negative potential of −2.34 V (versus NHE, pH 7), which could reduce CO2 after accepting electrons from electron donors such as reducing sulfur species. Simultaneously, UV light breaks sulfur bonds, benefiting the adsorption of charged carbonates onto S0 and assisting their photoreduction. Assuming that terrestrial hot springs covered 1% of primitive Earth’s surface, S0 at 10 μM could have produced maximal 109 kg/year HCOOH within 10-cm-thick photic zones, underlying its remarkable contributions to the accumulation of prebiotic biomolecules.

Author(s):  
P. Aguiar ◽  
T. J. Beveridge ◽  
A.-L. Reysenbach

Five hydrogen-oxidizing, thermophilic, strictly chemolithoautotrophic, microaerophilic strains, with similar (99–100 %) 16S rRNA gene sequences were isolated from terrestrial hot springs at Furnas, São Miguel Island, Azores, Portugal. The strain, designated Az-Fu1T, was characterized. The motile, 0·9–2·0 μm rods were Gram-negative and non-sporulating. The temperature growth range was from 50 to 73 °C (optimum at 68 °C). The strains grew fastest in 0·1 % (w/v) NaCl and at pH 6, although growth was observed from pH 5·5 to 7·0. Az-Fu1T can use elemental sulfur, sulfite, thiosulfate, ferrous iron or hydrogen as electron donors, and oxygen (0·2–9·0 %, v/v) as electron acceptor. Az-Fu1T is also able to grow anaerobically, with elemental sulfur, arsenate and ferric iron as electron acceptors. The Az-Fu1T G+C content was 33·6 mol%. Maximum-likelihood analysis of the 16S rRNA phylogeny placed the isolate in a distinct lineage within the Aquificales, closely related to Sulfurihydrogenibium subterraneum (2·0 % distant). The 16S rRNA gene of Az-Fu1T is 7·7 % different from that of Persephonella marina and 6·8 % different from Hydrogenothermus marinus. Based on the phenotypic and phylogenetic characteristics presented here, it is proposed that Az-Fu1T belongs to the recently described genus Sulfurihydrogenibium. It is further proposed that Az-Fu1T represents a new species, Sulfurihydrogenibium azorense.


2021 ◽  
Vol 9 (7) ◽  
pp. 1473
Author(s):  
Ani Saghatelyan ◽  
Armine Margaryan ◽  
Hovik Panosyan ◽  
Nils-Kåre Birkeland

The microbial diversity of high-altitude geothermal springs has been recently assessed to explore their biotechnological potential. However, little is known regarding the microbiota of similar ecosystems located on the Armenian Highland. This review summarizes the known information on the microbiota of nine high-altitude mineralized geothermal springs (temperature range 25.8–70 °C and pH range 6.0–7.5) in Armenia and Nagorno-Karabakh. All these geothermal springs are at altitudes ranging from 960–2090 m above sea level and are located on the Alpide (Alpine–Himalayan) orogenic belt, a seismically active region. A mixed-cation mixed-anion composition, with total mineralization of 0.5 mg/L, has been identified for these thermal springs. The taxonomic diversity of hot spring microbiomes has been examined using culture-independent approaches, including denaturing gradient gel electrophoresis (DGGE), 16S rRNA gene library construction, 454 pyrosequencing, and Illumina HiSeq. The bacterial phyla Proteobacteria, Bacteroidetes, Cyanobacteria, and Firmicutes are the predominant life forms in the studied springs. Archaea mainly include the phyla Euryarchaeota, Crenarchaeota, and Thaumarchaeota, and comprise less than 1% of the prokaryotic community. Comparison of microbial diversity in springs from Karvachar with that described for other terrestrial hot springs revealed that Proteobacteria, Bacteroidetes, Actinobacteria, and Deinococcus–Thermus are the common bacterial groups in terrestrial hot springs. Contemporaneously, specific bacterial and archaeal taxa were observed in different springs. Evaluation of the carbon, sulfur, and nitrogen metabolism in these hot spring communities has revealed diversity in terms of metabolic activity. Temperature seems to be an important factor in shaping the microbial communities of these springs. Overall, the diversity and richness of the microbiota are negatively affected by increasing temperature. Other abiotic factors, including pH, mineralization, and geological history, also impact the structure and function of the microbial community. More than 130 bacterial and archaeal strains (Bacillus, Geobacillus, Parageobacillus, Anoxybacillus, Paenibacillus, Brevibacillus Aeribacillus, Ureibacillus, Thermoactinomyces, Sporosarcina, Thermus, Rhodobacter, Thiospirillum, Thiocapsa, Rhodopseudomonas, Methylocaldum, Desulfomicrobium, Desulfovibrio, Treponema, Arcobacter, Nitropspira, and Methanoculleus) have been reported, some of which may be representative of novel species (sharing 91–97% sequence identity with their closest matches in GenBank) and producers of thermozymes and biomolecules with potential biotechnological applications. Whole-genome shotgun sequencing of T. scotoductus K1, as well as of the potentially new Treponema sp. J25 and Anoxybacillus sp. K1, were performed. Most of the phyla identified by 16S rRNA were also identified using metagenomic approaches. Detailed characterization of thermophilic isolates indicate the potential of the studied springs as a source of biotechnologically valuable microbes and biomolecules.


2017 ◽  
Vol 84 (3) ◽  
Author(s):  
Jacob M. Hilzinger ◽  
Vidhyavathi Raman ◽  
Kevin E. Shuman ◽  
Brian J. Eddie ◽  
Thomas E. Hanson

ABSTRACT The green sulfur bacteria ( Chlorobiaceae ) are anaerobes that use electrons from reduced sulfur compounds (sulfide, S 0 , and thiosulfate) as electron donors for photoautotrophic growth. Chlorobaculum tepidum , the model system for the Chlorobiaceae , both produces and consumes extracellular S 0 globules depending on the availability of sulfide in the environment. These physiological changes imply significant changes in gene regulation, which has been observed when sulfide is added to Cba. tepidum growing on thiosulfate. However, the underlying mechanisms driving these gene expression changes, i.e., the specific regulators and promoter elements involved, have not yet been defined. Here, differential RNA sequencing (dRNA-seq) was used to globally identify transcript start sites (TSS) that were present during growth on sulfide, biogenic S 0 , and thiosulfate as sole electron donors. TSS positions were used in combination with RNA-seq data from cultures growing on these same electron donors to identify both basal promoter elements and motifs associated with electron donor-dependent transcriptional regulation. These motifs were conserved across homologous Chlorobiaceae promoters. Two lines of evidence suggest that sulfide-mediated repression is the dominant regulatory mode in Cba. tepidum . First, motifs associated with genes regulated by sulfide overlap key basal promoter elements. Second, deletion of the Cba. tepidum 1277 ( CT1277 ) gene, encoding a putative regulatory protein, leads to constitutive overexpression of the sulfide:quinone oxidoreductase CT1087 in the absence of sulfide. The results suggest that sulfide is the master regulator of sulfur metabolism in Cba. tepidum and the Chlorobiaceae . Finally, the identification of basal promoter elements with differing strengths will further the development of synthetic biology in Cba. tepidum and perhaps other Chlorobiaceae . IMPORTANCE Elemental sulfur is a key intermediate in biogeochemical sulfur cycling. The photoautotrophic green sulfur bacterium Chlorobaculum tepidum either produces or consumes elemental sulfur depending on the availability of sulfide in the environment. Our results reveal transcriptional dynamics of Chlorobaculum tepidum on elemental sulfur and increase our understanding of the mechanisms of transcriptional regulation governing growth on different reduced sulfur compounds. This report identifies genes and sequence motifs that likely play significant roles in the production and consumption of elemental sulfur. Beyond this focused impact, this report paves the way for the development of synthetic biology in Chlorobaculum tepidum and other Chlorobiaceae by providing a comprehensive identification of promoter elements for control of gene expression, a key element of strain engineering.


2014 ◽  
Vol 75 ◽  
pp. 109-121 ◽  
Author(s):  
Chengling Jia ◽  
Chuanlun L. Zhang ◽  
Wei Xie ◽  
Jin-Xiang Wang ◽  
Fuyan Li ◽  
...  

Extremophiles ◽  
2018 ◽  
Vol 22 (4) ◽  
pp. 687-698 ◽  
Author(s):  
Lucy C. Stewart ◽  
Valerie K. Stucker ◽  
Matthew B. Stott ◽  
Cornel E. J. de Ronde

2021 ◽  
Author(s):  
Cécile Massiot ◽  
Craig Miller ◽  
Matthew Stott ◽  
Pilar Villamor ◽  
Hiroshi Asanuma ◽  
...  

<p>Calderas are major volcanic features with large volcanic and seismic hazards. They also host diverse microbiota, provide heat, energy, mineral and economic benefits. Despite their scientific and socio-economic importance, we still do not completely understand calderas and the interactions between volcanism, tectonism, fluid circulation and the deep biosphere because in-situ and subsurface observations are sparse.</p><p>The Okataina Volcanic Centre (OVC) in Aotearoa New Zealand, is one of two active giant calderas of the Taupō Volcanic Zone within the rapidly extending continental intra-arc Taupō Rift. This superb natural laboratory has: 1) numerous past eruptions of varied size and style, 2) documented co-eruptive earthquakes, 3) vigorous hydrothermal manifestations, 4) diverse microbial communities in hot springs but unknown in the subsurface.</p><p>We propose to establish a scientific drilling programme at the OVC to address:</p><ul><li>What are the conditions leading to volcanic eruptions; and volcano-tectonic feedbacks in intra-rift calderas?</li> <li>What controls fluid circulations in active calderas/rift regions?</li> <li>Does subsurface microbial community composition vary with tectonic and/or volcanic activity?</li> </ul><p>High temperatures complicate drillhole design, restrict data collection and prevent exploration of the biosphere. By targeting the cooler parts of the caldera, this project will use conventional engineering to maximise sampling (drill cores and fluids), downhole logging and establish long-term observatories.</p><p>Two preliminary drill targets are suggested: (1) in the centre of the caldera; (2) through the caldera margin. Drill data will provide a comprehensive record of past activity, establishing eruption frequency-magnitude relationships and precursors. Combined with well-known fault rupture history, the relative timing of tectonic and magmatic activity will be untangled. Drill data will unravel the relationships between the groundwater and hydrothermal systems, magma, faults and stress, informing thermo-hydro-mechanical regional caldera models with findings applicable worldwide. Drill cores and a dedicated fluid sampler triggered by nearby earthquakes will reveal the composition, function and potential change of microbial activity in response to rock and fluid variations.</p><p>The programme is informed by indigenous Māori, regulatory authorities and emergency managers to ensure scientific, cultural, regulatory and resilience outcomes. The programme will underpin 1) community resilience to volcanic and seismic hazards; 2) sustainable management of groundwater and geothermal resources, and 3) understanding of subsurface microbial diversity, function and geobiological interactions. At these early stages of planning, we invite the scientific community to contribute to the concept of this project in the exceptional OVC settings and strengthen linkages with other ongoing research and scientific drilling programmes.</p>


2020 ◽  
Vol 86 (7) ◽  
Author(s):  
Laurey Steinke ◽  
Gordon W. Slysz ◽  
Mary S. Lipton ◽  
Christian Klatt ◽  
James J. Moran ◽  
...  

ABSTRACT The upper green layer of the chlorophototrophic microbial mats associated with the alkaline siliceous hot springs of Yellowstone National Park consists of oxygenic cyanobacteria (Synechococcus spp.), anoxygenic Roseiflexus spp., and several other anoxygenic chlorophototrophs. Synechococcus spp. are believed to be the main fixers of inorganic carbon (Ci), but some evidence suggests that Roseiflexus spp. also contribute to inorganic carbon fixation during low-light, anoxic morning periods. Contributions of other phototrophic taxa have not been investigated. In order to follow the pathway of Ci incorporation into different taxa, mat samples were incubated with [13C]bicarbonate for 3 h during the early-morning, low-light anoxic period. Extracted proteins were treated with trypsin and analyzed by mass spectrometry, leading to peptide identifications and peptide isotopic profile signatures containing evidence of 13C label incorporation. A total of 25,483 peptides, corresponding to 7,221 proteins, were identified from spectral features and associated with mat taxa by comparison to metagenomic assembly sequences. A total of 1,417 peptides, derived from 720 proteins, were detectably labeled with 13C. Most 13C-labeled peptides were derived from proteins of Synechococcus spp. and Roseiflexus spp. Chaperones and proteins of carbohydrate metabolism were most abundantly labeled. Proteins involved in photosynthesis, Ci fixation, and N2 fixation were also labeled in Synechococcus spp. Importantly, most proteins of the 3-hydroxypropionate bi-cycle for Ci fixation in Roseiflexus spp. were labeled, establishing that members of this taxocene contribute to Ci fixation. Other taxa showed much lower [13C]bicarbonate incorporation. IMPORTANCE Yellowstone hot spring mats have been studied as natural models for understanding microbial community ecology and as modern analogs of stromatolites, the earliest community fossils on Earth. Stable-isotope probing of proteins (Pro-SIP) permitted short-term interrogation of the taxa that are involved in the important process of light-driven Ci fixation in this highly active community and will be useful in linking other metabolic processes to mat taxa. Here, evidence is presented that Roseiflexus spp., which use the 3-hydroxypropionate bi-cycle, are active in Ci fixation. Because this pathway imparts a lower degree of selection of isotopically heavy Ci than does the Calvin-Benson-Bassham cycle, the results suggest a mechanism to explain why the natural abundance of 13C in mat biomass is greater than expected if only the latter pathway were involved. Understanding how mat community members influence the 13C/12C ratios of mat biomass will help geochemists interpret the 13C/12C ratios of organic carbon in the fossil record.


Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 4023
Author(s):  
Roberta Iacono ◽  
Beatrice Cobucci-Ponzano ◽  
Federica De Lise ◽  
Nicola Curci ◽  
Luisa Maurelli ◽  
...  

Terrestrial hot springs are of great interest to the general public and to scientists alike due to their unique and extreme conditions. These have been sought out by geochemists, astrobiologists, and microbiologists around the globe who are interested in their chemical properties, which provide a strong selective pressure on local microorganisms. Drivers of microbial community composition in these springs include temperature, pH, in-situ chemistry, and biogeography. Microbes in these communities have evolved strategies to thrive in these conditions by converting hot spring chemicals and organic matter into cellular energy. Following our previous metagenomic analysis of Pisciarelli hot springs (Naples, Italy), we report here the comparative metagenomic study of three novel sites, formed in Pisciarelli as result of recent geothermal activity. This study adds comprehensive information about phylogenetic diversity within Pisciarelli hot springs by peeking into possible mechanisms of adaptation to biogeochemical cycles, and high applicative potential of the entire set of genes involved in the carbohydrate metabolism in this environment (CAZome). This site is an excellent model for the study of biodiversity on Earth and biosignature identification, and for the study of the origin and limits of life.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Laura Sánchez-García ◽  
Daniel Carrizo ◽  
Antonio Molina ◽  
Victoria Muñoz-Iglesias ◽  
María Ángeles Lezcano ◽  
...  

AbstractDetecting signs of potential extant/extinct life on Mars is challenging because the presence of organics on that planet is expected to be very low and most likely linked to radiation-protected refugia and/or preservative strategies (e.g., organo-mineral complexes). With scarcity of organics, accounting for biomineralization and potential relationships between biomarkers, mineralogy, and geochemistry is key in the search for extraterrestrial life. Here we explored microbial fingerprints and their associated mineralogy in Icelandic hydrothermal systems analog to Mars (i.e., high sulfur content, or amorphous silica), to identify potentially habitable locations on that planet. The mineralogical assemblage of four hydrothermal substrates (hot springs biofilms, mud pots, and steaming and inactive fumaroles) was analyzed concerning the distribution of biomarkers. Molecular and isotopic composition of lipids revealed quantitative and compositional differences apparently impacted by surface geothermal alteration and environmental factors. pH and water showed an influence (i.e., greatest biomass in circumneutral settings with highest supply and turnover of water), whereas temperature conditioned the mineralogy that supported specific microbial metabolisms related with sulfur. Raman spectra suggested the possible coexistence of abiotic and biomediated sources of minerals (i.e., sulfur or hematite). These findings may help to interpret future Raman or GC–MS signals in forthcoming Martian missions.


2006 ◽  
Vol 56 (12) ◽  
pp. 2909-2913 ◽  
Author(s):  
Olfa Haouari ◽  
Marie-Laure Fardeau ◽  
Laurence Casalot ◽  
Jean-Luc Tholozan ◽  
Moktar Hamdi ◽  
...  

Several strains of sulfate-reducing bacteria were isolated from marine sediments recovered near Tunis, Korbous and Bizerte, Tunisia. They all showed characteristics consistent with members of the genus Desulfovibrio. One of these strains, designated MB3T, was characterized further. Cells of strain MB3T were slender, curved, vibrio-shaped, motile, Gram-negative, non-spore-forming rods. They were positive for desulfoviridin as bisulfite reductase. Strain MB3T grew at temperatures of 15–45 °C (optimum 40 °C) and at pH 6.0–8.1 (optimum pH 7.0). NaCl was required for growth (optimum 20 g NaCl l−1). Strain MB3T utilized H2 in the presence of acetate with sulfate as electron acceptor. It also utilized lactate, ethanol, pyruvate, malate, fumarate, succinate, butanol and propanol as electron donors. Lactate was oxidized incompletely to acetate. Strain MB3T fermented pyruvate and fumarate (poorly). Electron acceptors utilized included sulfate, sulfite, thiosulfate, elemental sulfur and fumarate, but not nitrate or nitrite. The G+C content of the genomic DNA was 51 mol%. On the basis of genotypic, phenotypic and phylogenetic characteristics, strain MB3T (=DSM 18034T=NCIMB 14199T) is proposed as the type strain of a novel species, Desulfovibrio bizertensis sp. nov.


Sign in / Sign up

Export Citation Format

Share Document