scholarly journals Evolution of forelimb musculoskeletal function across the fish-to-tetrapod transition

2021 ◽  
Vol 7 (4) ◽  
pp. eabd7457
Author(s):  
J. L. Molnar ◽  
J. R. Hutchinson ◽  
R. Diogo ◽  
J. A. Clack ◽  
S. E. Pierce

One of the most intriguing questions in vertebrate evolution is how tetrapods gained the ability to walk on land. Although many hypotheses have been proposed, few have been rigorously tested using the fossil record. Here, we build three-dimensional musculoskeletal models of the pectoral appendage in Eusthenopteron, Acanthostega, and Pederpes and quantitatively examine changes in forelimb function across the fin-to-limb transition. Through comparison with extant fishes and tetrapods, we show that early tetrapods share a suite of characters including restricted mobility in humerus long-axis rotation, increased muscular leverage for humeral retraction, but not depression/adduction, and increased mobility in elbow flexion-extension. We infer that the earliest steps in tetrapod forelimb evolution were related to limb-substrate interactions, whereas specializations for weight support appeared later. Together, these results suggest that competing selective pressures for aquatic and terrestrial environments produced a unique, ancestral “early tetrapod” forelimb locomotor mode unlike that of any extant animal.

1998 ◽  
Vol 02 (01) ◽  
pp. 45-54 ◽  
Author(s):  
Shinji Tanaka ◽  
Kai-Nan An ◽  
Bernard F. Morrey

Three-dimensional kinematics of the ulnohumeral joint under simulated active elbow joint flexion-extension was obtained by using an electromagnetic tacking device. The joint motion was analyzed based on Eulerian angle description. In order to minimize the effect of "downstream cross-talk" on calculation of the three Eulerian angles, an optimal axis to best represent flexion-extension of the elbow joint was established. This axis, on average, is close to the line joining the centers of the capitellum and the trochlear groove. Furthermore, joint laxity under valgus-varus stress was also examined. With the weight of the forearm as the stress, maximums of 7.6° valgus-varus laxity and 5.3° axial rotation laxity were observed within a range of elbow flexion. The results of this study provide useful baseline information on joint laxity for the evaluation of elbow joints with implant replacements and other surgical treatment modalities.


Author(s):  
Wei Wang ◽  
Dongmei Wang ◽  
Mariska Wesseling ◽  
Bin Xue ◽  
Feiyue Li

This study aimed to find an optimal measurement protocol of elbow and forearm kinematics using different modelling and tracking methods. Kinematic data of elbow flexion/extension and forearm pronation/supination was acquired using optical motion capture from 12 healthy male volunteers. Segment coordinate systems for humerus, forearm, radius, ulna, and hand were defined. Different tracking methods, using anatomical markers or rigid or point maker clusters, were used to compute the three-dimensional rotations. Marker placement errors were assessed to evaluate the rigid body assumption. Multiple comparisons demonstrated statistical differences between tracking methods: compared to using only anatomical markers, tracking using clusters reduced the estimated range of pronation/supination by 14.9%–43.2%, while it estimated increased flexion/extension by 5.3%–9.1%. The study suggests using only anatomical markers exerts the optimal estimation of elbow and forearm kinematics. Modelling using the coordinate systems of the humerus and forearm and of the humerus and ulna, respectively, demonstrated good consistency with literature and are correspondingly regarded as the most appropriate approach for measuring pronation/supination and flexion/extension. The results are valuable in establishing a measurement protocol for analysing elbow and forearm kinematics, avoiding confusions and misinterpretations in communicating results from different methodologies.


2021 ◽  
Vol 11 (6) ◽  
pp. 2615
Author(s):  
Elisa Galofaro ◽  
Erika D’Antonio ◽  
Fabrizio Patané ◽  
Maura Casadio ◽  
Lorenzo Masia

Proprioception—the sense of body segment’s position and movement—plays a crucial role in human motor control, integrating the sensory information necessary for the correct execution of daily life activities. Despite scientific evidence recognizes that several neurological diseases hamper proprioceptive encoding with consequent inability to correctly perform movements, proprioceptive assessment in clinical settings is still limited to standard scales. Literature on physiology of upper limb’s proprioception is mainly focused on experimental approaches involving planar setups, while the present work provides a novel paradigm for assessing proprioception during single—and multi-joint matching tasks in a three-dimensional workspace. To such extent, a six-degrees of freedom exoskeleton, ALEx-RS (Arm Light Exoskeleton Rehab Station), was used to evaluate 18 healthy subjects’ abilities in matching proprioceptive targets during combined single and multi-joint arm’s movements: shoulder abduction/adduction, shoulder flexion/extension, and elbow flexion/extension. Results provided evidence that proprioceptive abilities depend on the number of joints simultaneously involved in the task and on their anatomical location, since muscle spindles work along their preferred direction, modulating the streaming of sensory information accordingly. These findings suggest solutions for clinical sensorimotor evaluation after neurological disease, where assessing proprioceptive deficits can improve the recovery path and complement the rehabilitation outcomes.


2012 ◽  
Vol 12 (03) ◽  
pp. 1250046 ◽  
Author(s):  
LUCA TERSI ◽  
SILVIA FANTOZZI ◽  
RITA STAGNI ◽  
ANGELO CAPPELLO

The reliable knowledge that model-based three-dimensional (3D) fluoroscopy can provide about in vivo joints kinematics is essential to diagnose orthopedic pathologies, develop new prosthesis, and evaluate clinical procedures. To exploit 3D fluoroscopy for the analysis of elbow kinematics, its use was evaluated considering a single model for the forearm or two different models for the ulna and radius. Active elbow flexion-extension and prono-supination motor tasks of a healthy male subject were acquired by means of fluoroscopy. The 3D bone models were automatically aligned to the relevant projections. The pose estimation algorithm sought the tangency condition of the projection rays with the model surface, minimizing a cost function and exploiting an adaptive distance map. Five iterative guided alignments were performed to avoid the final convergence to a local minimum. The results highlighted the critical alignment of the ulna/radius model, particularly when prono-supination is performed. From the physiological motion patterns and given the values of the cost function, 3D fluoroscopy was proven to be applicable to the analysis of the elbow kinematics when single bone models for the ulna and radius are used.


1998 ◽  
Vol 120 (5) ◽  
pp. 625-633 ◽  
Author(s):  
L. Zhang ◽  
J. Butler ◽  
T. Nishida ◽  
G. Nuber ◽  
H. Huang ◽  
...  

The direction of rotation (DOR) of individual elbow muscles, defined as the direction in which a muscle rotates the forearm relative to the upper arm in three-dimensional space, was studied in vivo as a function of elbow flexion and forearm rotation. Electrical stimulation was used to activate an individual muscle selectively, and the resultant flexion-extension, supination-pronation, and varus-valgus moments were used to determine the DOR. Furthermore, multi-axis moment-angle relationships of individual muscles were determined by stimulating the muscle at a constant submaximal level across different joint positions, which was assumed to result in a constant level of muscle activation. The muscles generate significant moments about axes other than flexion-extension, which is potentially important for actively controlling joint movement and maintaining stability about all axes. Both the muscle DOR and the multi axis moments vary with the joint position systematically. Variations of the DOR and moment-angle relationship across muscle twitches of different amplitudes in a subject were small, while there were considerable variations between subjects.


2021 ◽  
Author(s):  
Dorian VERDEL ◽  
Simon Bastide ◽  
Nicolas Vignais ◽  
Olivier Bruneau ◽  
Bastien Berret

Abstract Active exoskeletons are promising devices for improving rehabilitation procedures in patients and preventing musculoskeletal disorders in workers. In particular, exoskeletons implementing human limb’s weight support are interesting to restore some mobility in patients with muscle weakness and help in occupational load carrying tasks. The present study aims at improving weight support of the upper limb by providing a weight model considering joint misalignments and a control law including feedforward terms learned from a prior population-based analysis. Three experiments, for design and validation purposes, are conducted on a total of 65 participants who performed posture maintenance and elbow flexion/extension movements. The introduction of joint misalignments in the weight support model significantly reduced the model errors, in terms of weight estimation, and enhanced the estimation reliability. The introduced control architecture reduced model tracking errors regardless of the condition. Weight support significantly decreased the activity of antigravity muscles, as expected, but increased the activity of elbow extensors because gravity is usually exploited by humans to accelerate a limb downwards. These findings suggest that an adaptive weight support controller could be envisioned to further minimize human effort in certain applications.


2018 ◽  
Vol 5 (11) ◽  
pp. 181400 ◽  
Author(s):  
Sophie Regnault ◽  
Stephanie E. Pierce

Although evolutionary transformation of the pectoral girdle and forelimb appears to have had a profound impact on mammalian locomotor and ecological diversity, both the sequence of anatomical changes and the functional implications remain unclear. Monotremes can provide insight into an important stage of this evolutionary transformation, due to their phylogenetic position as the sister-group to therian mammals and their mosaic of plesiomorphic and derived features. Here we build a musculoskeletal computer model of the echidna pectoral girdle and forelimb to estimate joint ranges of motion (ROM) and muscle moment arms (MMA)—two fundamental descriptors of biomechanical function. We find that the echidna's skeletal morphology restricts scapulocoracoid mobility and glenohumeral flexion–extension compared with therians. Estimated shoulder ROMs and MMAs for muscles crossing the shoulder indicate that morphology of the echidna pectoral girdle and forelimb is optimized for humeral adduction and internal rotation, consistent with limited in vivo data. Further, more muscles act to produce humeral long-axis rotation in the echidna compared to therians, as a consequence of differences in muscle geometry. Our musculoskeletal model allows correlation of anatomy and function, and can guide hypotheses regarding function in extinct taxa and the morphological and locomotor transformation leading to therian mammals.


2018 ◽  
Vol 13 (5) ◽  
pp. 643-648 ◽  
Author(s):  
Kane J Middleton ◽  
Denny JM Wells ◽  
Daryl H Foster ◽  
Jacqueline A Alderson

Cricket bowlers must be able to deliver the ball with less than 15° of elbow extension or face suspension. The aim of this case study was to report the findings of a technique remediation programme on the elbow joint kinematics of an international cricket bowler. The bowler underwent a three-dimensional bowling analysis to measure his elbow joint kinematics before and after a technique remediation programme. The bowler was required to bowl six deliveries of each of his off-break, quicker and doosra variations. The remediation programme focussed on modifying the bowler’s run-up, shoulder alignment and ball/hand position at back foot impact. Elbow joint waveform data were analysed using statistical parametric mapping tests and coefficient of multiple determination. Elbow flexion–extension angles at discrete events were compared pre- and post-remediation using paired-sample t-tests. Results showed that the remediation programme was effective in reducing the amount of elbow flexion, particularly in the first 60% of the delivery cycle. Elbow extension range was significantly lower post-remediation for the off-break and quicker deliveries. It was concluded that basic short-term technique remediation can be effective in reducing elbow extension range.


2018 ◽  
Vol 18 (02) ◽  
pp. 1850013 ◽  
Author(s):  
WEI WANG ◽  
DONGMEI WANG ◽  
CHENGHUI LAI

This study aimed to investigate three-dimensional (3D) kinematic characteristics of elbow and wrist motions, the relationship between them, and the anthropometric factors affecting them. Using motion capture system, this study measured and calculated the 3D angles of elbow flexion/extension, elbow pronation/supination, wrist flexion/extension, and wrist adduction/abduction of 40 healthy young adults. The study measured nine anthropometric variables and used unpaired [Formula: see text]-tests to assess gender difference. Also, bivariate correlation tests and step-wise multiple regression analyses were performed between joint ranges and anthropometric variables, as well as different joint motions. Results showed two opposite patterns occurred during elbow flexion/extension. The study found a correlation between the range of elbow flexion/extension and the range of elbow pronation/supination that occurred during elbow flexion/extension. Additionally, the study tested joint correlations between the four joint motions. Finally, the study established bivariate and multiple regression relationships between range of elbow motions and anthropometric factors. This research presented an unrecognized pattern of 3D elbow flexion/extension, and associations between various anthropometric factors and different joint motions. These findings can contribute to the design of orthosis of upper extremities and the rehabilitation of joint mobility.


Author(s):  
Dorian Verdel ◽  
Simon Bastide ◽  
Nicolas Vignais ◽  
Olivier Bruneau ◽  
Bastien Berret

Active exoskeletons are promising devices for improving rehabilitation procedures in patients and preventing musculoskeletal disorders in workers. In particular, exoskeletons implementing human limb’s weight support are interesting to restore some mobility in patients with muscle weakness and help in occupational load carrying tasks. The present study aims at improving weight support of the upper limb by providing a weight model considering joint misalignments and a control law including feedforward terms learned from a prior population-based analysis. Three experiments, for design and validation purposes, are conducted on a total of 65 participants who performed posture maintenance and elbow flexion/extension movements. The introduction of joint misalignments in the weight support model significantly reduced the model errors, in terms of weight estimation, and enhanced the estimation reliability. The introduced control architecture reduced model tracking errors regardless of the condition. Weight support significantly decreased the activity of antigravity muscles, as expected, but increased the activity of elbow extensors because gravity is usually exploited by humans to accelerate a limb downwards. These findings suggest that an adaptive weight support controller could be envisioned to further minimize human effort in certain applications.


Sign in / Sign up

Export Citation Format

Share Document