scholarly journals Martian subsurface cryosalt expansion and collapse as trigger for landslides

2021 ◽  
Vol 7 (6) ◽  
pp. eabe4459 ◽  
Author(s):  
J. L. Bishop ◽  
M. Yeşilbaş ◽  
N. W. Hinman ◽  
Z. F. M. Burton ◽  
P. A. J. Englert ◽  
...  

On Mars, seasonal martian flow features known as recurring slope lineae (RSL) are prevalent on sun-facing slopes and are associated with salts. On Earth, subsurface interactions of gypsum with chlorides and oxychlorine salts wreak havoc: instigating sinkholes, cave collapse, debris flows, and upheave. Here, we illustrate (i) the disruptive potential of sulfate-chloride reactions in laboratory soil crust experiments, (ii) the formation of thin films of mixed ice-liquid water “slush” at −40° to −20°C on salty Mars analog grains, (iii) how mixtures of sulfates and chlorine salts affect their solubilities in low-temperature environments, and (iv) how these salt brines could be contributing to RSL formation on Mars. Our results demonstrate that interactions of sulfates and chlorine salts in fine-grained soils on Mars could absorb water, expand, deliquesce, cause subsidence, form crusts, disrupt surfaces, and ultimately produce landslides after dust loading on these unstable surfaces.

1990 ◽  
Vol 201 ◽  
Author(s):  
J. K. Hirvonen ◽  
T. G. Tetreault ◽  
G. Parker ◽  
C. J. McHargue

AbstractThin ceramic films (A12O3 ZrO2, Si3N4, and BN) have been prepared by ion beam assisted deposition (IBAD) and their mechanical properties examined. The films exhibit extreme ductility and adhesion, with the former property possibly attributed to the very fine grained, quasi-amorphous grain structure noted for low temperature IBAD coatings.


1997 ◽  
Author(s):  
Nobuhito OGATA ◽  
Yasuyuki ITO ◽  
Kazuya ISHIHARA ◽  
Masaya NAGATA ◽  
Hitoshi URASHIMA ◽  
...  

Author(s):  
M. A. Kirk ◽  
M. C. Baker ◽  
B. J. Kestel ◽  
H. W. Weber

It is well known that a number of compound superconductors with the A15 structure undergo a martensite transformation when cooled to the superconducting state. Nb3Sn is one of those compounds that transforms, at least partially, from a cubic to tetragonal structure near 43 K. To our knowledge this transformation in Nb3Sn has not been studied by TEM. In fact, the only low temperature TEM study of an A15 material, V3Si, was performed by Goringe and Valdre over 20 years ago. They found the martensite structure in some foil areas at temperatures between 11 and 29 K, accompanied by faults that consisted of coherent twin boundaries on {110} planes. In pursuing our studies of irradiation defects in superconductors, we are the first to observe by TEM a similar martensite structure in Nb3Sn.Samples of Nb3Sn suitable for TEM studies have been produced by both a liquid solute diffusion reaction and by sputter deposition of thin films.


Alloy Digest ◽  
1983 ◽  
Vol 32 (4) ◽  

Abstract TRI-MARK TM-811N2 is a flux-cored welding electrode for all position semiautomatic arc welding. It is designed to weld 2-3% nickel steels for applications requiring good toughness at subzero temperatures; in addition, it is used to weld various other high-strength low-alloy steels and various fine-grained steels with low-temperature toughness. Tri-Mark TM-811N2 is used to deposit typically 2.35% nickel steel weld metal with good low-temperature impact properties. It is used for shipbuilding, oil rigs and similar structures. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as heat treating, machining, and joining. Filing Code: SA-389. Producer or source: Tri-Mark Inc..


2009 ◽  
Vol 94 (22) ◽  
pp. 222110 ◽  
Author(s):  
S. S. N. Bharadwaja ◽  
C. Venkatasubramanian ◽  
N. Fieldhouse ◽  
S. Ashok ◽  
M. W. Horn ◽  
...  

2021 ◽  
Vol 26 ◽  
pp. 102050
Author(s):  
Mehdi Dehghani ◽  
Ershad Parvazian ◽  
Nastaran Alamgir Tehrani ◽  
Nima Taghavinia ◽  
Mahmoud Samadpour

2004 ◽  
Vol 268 (1-2) ◽  
pp. 24-28 ◽  
Author(s):  
Z. Sefrioui ◽  
J.L. Menéndez ◽  
A. Cebollada ◽  
F. Briones ◽  
A. Hernando

2018 ◽  
Vol 165 ◽  
pp. 04011
Author(s):  
Keisuke Tanaka ◽  
Yuta Murase ◽  
Hirohisa Kimachi

The effect of micro-notches on the fatigue strength of nickel thin films was studied. Two types of thin films with 10 μm thickness were produced by electrodeposition using sulfamate solution without and with brightener: ultra-fine grained film (UFG) with the grain size of 384 nm and nano-crystalline grained film (NCG) with that of 17 nm. Micro-sized notches introduced by FIB had the width of 2 μm and various depths from 8 to 150μm. Fatigue tests were conducted under the stress ratio of 0.1. The fatigue strength decreased with increasing depth of notches. NCG had much higher strength than UFG compared at the same notch depth. Notches as small as 8μm did reduce the fatigue strength of both UFG and NCG. The fatigue limit was controlled by the initiation of cracks and no non-propagating crack was observed in specimens fatigued below the fatigue limit. A model of fictitious crack successfully predicted the reduction of the fatigue limit due to micro-notches. The characteristic crack length of NCG was much smaller than the UFG, while the fatigue strength of defect-free NCG was larger than that of UFG. SEM observation of fracture surfaces was conducted to reveal micromechanisms of fatigue crack initiation.


Sign in / Sign up

Export Citation Format

Share Document