scholarly journals Microengineered perfusable 3D-bioprinted glioblastoma model for in vivo mimicry of tumor microenvironment

2021 ◽  
Vol 7 (34) ◽  
pp. eabi9119 ◽  
Author(s):  
Lena Neufeld ◽  
Eilam Yeini ◽  
Noa Reisman ◽  
Yael Shtilerman ◽  
Dikla Ben-Shushan ◽  
...  

Many drugs show promising results in laboratory research but eventually fail clinical trials. We hypothesize that one main reason for this translational gap is that current cancer models are inadequate. Most models lack the tumor-stroma interactions, which are essential for proper representation of cancer complexed biology. Therefore, we recapitulated the tumor heterogenic microenvironment by creating fibrin glioblastoma bioink consisting of patient-derived glioblastoma cells, astrocytes, and microglia. In addition, perfusable blood vessels were created using a sacrificial bioink coated with brain pericytes and endothelial cells. We observed similar growth curves, drug response, and genetic signature of glioblastoma cells grown in our 3D-bioink platform and in orthotopic cancer mouse models as opposed to 2D culture on rigid plastic plates. Our 3D-bioprinted model could be the basis for potentially replacing cell cultures and animal models as a powerful platform for rapid, reproducible, and robust target discovery; personalized therapy screening; and drug development.

Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 438
Author(s):  
Felista L. Tansi ◽  
Filipp Fröbel ◽  
Wisdom O. Maduabuchi ◽  
Frank Steiniger ◽  
Martin Westermann ◽  
...  

Magnetic hyperthermia can cause localized thermal eradication of several solid cancers. However, a localized and homogenous deposition of high concentrations of magnetic nanomaterials into the tumor stroma and tumor cells is mostly required. Poorly responsive cancers such as the pancreatic adenocarcinomas are hallmarked by a rigid stroma and poor perfusion to therapeutics and nanomaterials. Hence, approaches that enhance the infiltration of magnetic nanofluids into the tumor stroma convey potentials to improve thermal tumor therapy. We studied the influence of the matrix-modulating enzymes hyaluronidase and collagenase on the uptake of magnetic nanoparticles by pancreatic cancer cells and 3D spheroids thereof, and the overall impact on magnetic heating and cell death. Furthermore, we validated the effect of hyaluronidase on magnetic hyperthermia treatment of heterotopic pancreatic cancer models in mice. Treatment of cultured cells with the enzymes caused higher uptake of magnetic nanoparticles (MNP) as compared to nontreated cells. For example, hyaluronidase caused a 28% increase in iron deposits per cell. Consequently, the thermal doses (cumulative equivalent minutes at 43 °C, CEM43) increased by 15–23% as compared to heat dose achieved for cells treated with magnetic hyperthermia without using enzymes. Likewise, heat-induced cell death increased. In in vivo studies, hyaluronidase-enhanced infiltration and distribution of the nanoparticles in the tumors resulted in moderate heating levels (CEM43 of 128 min as compared to 479 min) and a slower, but persistent decrease in tumor volumes over time after treatment, as compared to comparable treatment without hyaluronidase. The results indicate that hyaluronidase, in particular, improves the infiltration of magnetic nanoparticles into pancreatic cancer models, impacts their thermal treatment and cell depletion, and hence, will contribute immensely in the fight against pancreatic and many other adenocarcinomas.


Molecules ◽  
2019 ◽  
Vol 24 (11) ◽  
pp. 2109 ◽  
Author(s):  
Camila Ramalho Bonturi ◽  
Mariana Cristina Cabral Silva ◽  
Helena Motaln ◽  
Bruno Ramos Salu ◽  
Rodrigo da Silva Ferreira ◽  
...  

Currently available drugs for treatment of glioblastoma, the most aggressive brain tumor, remain inefficient, thus a plethora of natural compounds have already been shown to have antimalignant effects. However, these have not been tested for their impact on tumor cells in their microenvironment-simulated cell models, e.g., mesenchymal stem cells in coculture with glioblastoma cell U87 (GB). Mesenchymal stem cells (MSC) chemotactically infiltrate the glioblastoma microenvironment. Our previous studies have shown that bone-marrow derived MSCs impair U87 growth and invasion via paracrine and cell–cell contact-mediated cross-talk. Here, we report on a plant-derived protein, obtained from Crataeva tapia tree Bark Lectin (CrataBL), having protease inhibitory/lectin activities, and demonstrate its effects on glioblastoma cells U87 alone and their cocultures with MSCs. CrataBL inhibited U87 cell invasion and adhesion. Using a simplified model of the stromal microenvironment, i.e., GB/MSC direct cocultures, we demonstrated that CrataBL, when added in increased concentrations, caused cell cycle arrest and decreased cocultured cells’ viability and proliferation, but not invasion. The cocultured cells’ phenotypes were affected by CrataBL via a variety of secreted immunomodulatory cytokines, i.e., G-CSF, GM-CSF, IL-6, IL-8, and VEGF. We hypothesize that CrataBL plays a role by boosting the modulatory effects of MSCs on these glioblastoma cell lines and thus the effects of this and other natural lectins and/or inhibitors would certainly be different in the tumor microenvironment compared to tumor cells alone. We have provided clear evidence that it makes much more sense testing these potential therapeutic adjuvants in cocultures, mimicking heterogeneous tumor–stroma interactions with cancer cells in vivo. As such, CrataBL is suggested as a new candidate to approach adjuvant treatment of this deadly tumor.


Author(s):  
Judith Pape ◽  
Mark Emberton ◽  
Umber Cheema

The use of tissue-engineered 3D models of cancer has grown in popularity with recent advances in the field of cancer research. 3D models are inherently more biomimetic compared to 2D cell monolayers cultured on tissue-culture plastic. Nevertheless 3D models still lack the cellular and matrix complexity of native tissues. This review explores different 3D models currently used, outlining their benefits and limitations. Specifically, this review focuses on stiffness and collagen density, compartmentalization, tumor-stroma cell population and extracellular matrix composition. Furthermore, this review explores the methods utilized in different models to directly measure cancer invasion and growth. Of the models evaluated, with PDX and in vivo as a relative “gold standard”, tumoroids were deemed as comparable 3D cancer models with a high degree of biomimicry, in terms of stiffness, collagen density and the ability to compartmentalize the tumor and stroma. Future 3D models for different cancer types are proposed in order to improve the biomimicry of cancer models used for studying disease progression.


2014 ◽  
Author(s):  
Raul M Luque ◽  
Mario Duran-Prado ◽  
David Rincon-Fernandez ◽  
Marta Hergueta-Redondo ◽  
Michael D Culler ◽  
...  

2019 ◽  
Author(s):  
Daniel Sun ◽  
Soumya Poddar ◽  
Roy D. Pan ◽  
Juno Van Valkenburgh ◽  
Ethan Rosser ◽  
...  

The lead compound, an ⍺-N-heterocyclic carboxaldehyde thiosemicarbazone <b>HCT-13</b>, was highly potent against a panel of pancreatic, small cell lung carcinoma, and prostate cancer models, with IC<sub>90</sub> values in the low-to-mid nanomolar range.<b> </b>We show that the cytotoxicity of <b>HCT-13</b> is copper-dependent, that it acts as a copper ionophore, induces production of reactive oxygen species (ROS), and promotes mitochondrial dysfunction and S-phase arrest. Lastly, DNA damage response/replication stress response (DDR/RSR) pathways, specifically Ataxia-Telangiectasia Mutated (ATM) and Rad3-related protein kinase (ATR), were identified as actionable adaptive resistance mechanisms following <b>HCT-13 </b>treatment. Taken together, <b>HCT-13 </b>is potent against solid tumor models and warrants <i>in vivo</i> evaluation against aggressive tumor models, either as a single agent or as part of a combination therapy.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi62-vi63
Author(s):  
Ravi Narayan ◽  
Piet Molenaar ◽  
Fleur Cornelissen ◽  
Tom Wurdinger ◽  
Jan Koster ◽  
...  

Abstract Personalized cancer treatments using synergistic combinations of drugs is attractive but proves to be highly challenging. The combinatorial nature of such problems results in an enormous parameter space that cannot be resolved by empirical research, i.e. testing all combinations for all molecularly defined tumors. In addition, effective drug synergy is hard to predict. Here we present an approach to map data of drug-response encyclopedias and represent these as a drug atlas. This atlas consists of a framework of chemotherapeutic responses that represents a drug vulnerability landscape of cancer. Based on data from the literature we found that many synergistic drug combinations show distinct inter therapy responses and drug sensitivities. We confirmed this by performing a drug combination screen against glioblastoma where we used 270 combination experiments. From the identified dual therapies we were able to predict and validate a triple drug synergy which was validated in vivo. This new and generalizable strategy opens the door to unforeseen personalized multidrug combination approaches.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 480
Author(s):  
Caitlyn A. Moore ◽  
Zain Siddiqui ◽  
Griffin J. Carney ◽  
Yahaira Naaldijk ◽  
Khadidiatou Guiro ◽  
...  

Translational medicine requires facile experimental systems to replicate the dynamic biological systems of diseases. Drug approval continues to lag, partly due to incongruencies in the research pipeline that traditionally involve 2D models, which could be improved with 3D models. The bone marrow (BM) poses challenges to harvest as an intact organ, making it difficult to study disease processes such as breast cancer (BC) survival in BM, and to effective evaluation of drug response in BM. Furthermore, it is a challenge to develop 3D BM structures due to its weak physical properties, and complex hierarchical structure and cellular landscape. To address this, we leveraged 3D bioprinting to create a BM structure with varied methylcellulose (M): alginate (A) ratios. We selected hydrogels containing 4% (w/v) M and 2% (w/v) A, which recapitulates rheological and ultrastructural features of the BM while maintaining stability in culture. This hydrogel sustained the culture of two key primary BM microenvironmental cells found at the perivascular region, mesenchymal stem cells and endothelial cells. More importantly, the scaffold showed evidence of cell autonomous dedifferentiation of BC cells to cancer stem cell properties. This scaffold could be the platform to create BM models for various diseases and also for drug screening.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 930
Author(s):  
Donatella Delle Cave ◽  
Riccardo Rizzo ◽  
Bruno Sainz ◽  
Giuseppe Gigli ◽  
Loretta L. del Mercato ◽  
...  

Pancreatic cancer, the fourth most common cancer worldwide, shows a highly unsuccessful therapeutic response. In the last 10 years, neither important advancements nor new therapeutic strategies have significantly impacted patient survival, highlighting the need to pursue new avenues for drug development discovery and design. Advanced cellular models, resembling as much as possible the original in vivo tumor environment, may be more successful in predicting the efficacy of future anti-cancer candidates in clinical trials. In this review, we discuss novel bioengineered platforms for anticancer drug discovery in pancreatic cancer, from traditional two-dimensional models to innovative three-dimensional ones.


Author(s):  
Sabina Pozzi ◽  
Anna Scomparin ◽  
Sahar Israeli-Dangoor ◽  
Daniel Rodriguez ◽  
Paula Ofek ◽  
...  
Keyword(s):  

Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1178
Author(s):  
Vito Terlizzi ◽  
Carmela Colangelo ◽  
Giovanni Marsicovetere ◽  
Michele D’Andria ◽  
Michela Francalanci ◽  
...  

We evaluated the effectiveness and safety of elexacaftor/tezacaftor/ivacaftor (ELX/TEZ/IVA) in three subjects carrying the Phe508del/unknown CFTR genotype. An ex vivo analysis on nasal epithelial cells (NEC) indicated a significant improvement of CFTR gating activity after the treatment. Three patients were enrolled in an ELX/TEZ/IVA managed-access program, including subjects with the highest percent predicted Forced Expiratory Volume in the 1st second (ppFEV1) < 40 in the preceding 3 months. Data were collected at baseline and after 8, 12 and 24 weeks of follow-up during treatment. All patients showed a considerable decrease of sweat chloride (i.e., meanly about 60 mmol/L as compared to baseline), relevant improvement of ppFEV1 (i.e., >8) and six-minute walk test, and an increase in body mass index after the first 8 weeks of treatment. No pulmonary exacerbations occurred during the 24 weeks of treatment and all domains of the CF Questionnaire-Revised improved. No safety concerns related to the treatment occurred. This study demonstrates the benefit from the ELX/TEZ/IVA treatment in patients with CF with the Phe508del and one unidentified CFTR variant. The preliminary ex vivo analysis of the drug response on NEC helps to predict the in vivo therapeutic endpoints.


Sign in / Sign up

Export Citation Format

Share Document