Endolithic Blue-Green Algae in the Dry Valleys: Primary Producers in the Antarctic Desert Ecosystem

Science ◽  
1976 ◽  
Vol 193 (4259) ◽  
pp. 1247-1249 ◽  
Author(s):  
E. I. FRIEDMANN ◽  
R. OCAMPO
1964 ◽  
Vol 42 (2) ◽  
pp. 127-137 ◽  
Author(s):  
Osmund Holm-Hansen

Numerous species of blue-green, green, and yellow-green algae, isolated from various habitats in Wisconsin and in the Antarctic, were tested for their ability to survive freeze-drying. Most of the species from the Antarctic survived, whereas many of the species from Wisconsin did not survive the lyophilization procedure. Addition of organic adjuvants to the algal suspensions resulted in greater survival for most of the green algae, but had little or no effect on survival of blue-green algae. Three different methods of drying frozen algal samples are described.


Author(s):  
Charles Sheppard

The symbiosis between corals and the dinoflagellates—zooxanthellae—is the key to a tight recycling of nutrients on reefs that generally thrive best in nutrient poor parts of the oceans. But several other mechanisms and species groups aid transmission of organic matter and energy along the numerous food chains of a reef. Viruses, bacteria, and archaea are key to the recycling of carbon and organic compounds, making the ‘microbial loop’, one key but invisible aspect to how the reef functions. Cyanobacteria, formerly blue-green algae, are a major part of the micro-benthos too, and are important primary producers. Protists are also hugely abundant—larger, single-celled organisms which are eukaryotes with cells with nuclei, and this group has species that exist in planktonic and benthic forms. Foraminifera are important protists, being abundant and having calcareous tests, so that they are significant sand producers in some areas. Finally, zooplankton provide food for numerous reef species, and indeed larvae from all species form part of the plankton temporarily too.


Author(s):  
L. V. Leak

Electron microscopic observations of freeze-fracture replicas of Anabaena cells obtained by the procedures described by Bullivant and Ames (J. Cell Biol., 1966) indicate that the frozen cells are fractured in many different planes. This fracturing or cleaving along various planes allows one to gain a three dimensional relation of the cellular components as a result of such a manipulation. When replicas that are obtained by the freeze-fracture method are observed in the electron microscope, cross fractures of the cell wall and membranes that comprise the photosynthetic lamellae are apparent as demonstrated in Figures 1 & 2.A large portion of the Anabaena cell is composed of undulating layers of cytoplasm that are bounded by unit membranes that comprise the photosynthetic membranes. The adjoining layers of cytoplasm are closely apposed to each other to form the photosynthetic lamellae. Occassionally the adjacent layers of cytoplasm are separated by an interspace that may vary in widths of up to several 100 mu to form intralamellar vesicles.


2017 ◽  
Vol 40 (1) ◽  
pp. 47-62 ◽  
Author(s):  
I. M. Chung ◽  
S. H. Kim ◽  
Y.T. Oh ◽  
M. Ali ◽  
A. Ahmad

2009 ◽  
Vol 33 (5) ◽  
pp. 860-865
Author(s):  
Lan-Lan LU ◽  
Gen-Bao LI ◽  
Yin-Wu SHEN ◽  
Ming-Ming HU ◽  
Yong-Ding LIU

1995 ◽  
Vol 31 (11) ◽  
pp. 153-158 ◽  
Author(s):  
M. Kajino ◽  
K. Sakamoto

Musty odor has occurred annually in Lake Biwa since 1969. Osaka municipal waterworks, which is located downstream of Lake Biwa, has made many efforts to treat musty-odor compounds produced in Lake Biwa from spring through autumn. With the development of analytical methods for the determination of musty-odor compounds, we have been able to confirm that planktonic blue-green algae are the major causes of the musty-odor occurrences. The relationship between the growth of blue-green algae and the water quality was not so apparent. However, through our data analysis focusing on the relationship between musty-odor occurrences due to Phormidium tenue or Oscillatoria tenuis and some nutrients in Lake Biwa, we found that the concentration of nitrate in water may be an important parameter for the estimation of growth of the algae and the musty-odor behavior.


Sign in / Sign up

Export Citation Format

Share Document