Histone H1 represses transcription from minichromosomes assembled in vitro

1989 ◽  
Vol 9 (12) ◽  
pp. 5573-5584
Author(s):  
A Shimamura ◽  
M Sapp ◽  
A Rodriguez-Campos ◽  
A Worcel

We have previously shown that transcription from a Xenopus 5S rRNA gene assembled into chromatin in vitro can be repressed in the absence of histone H1 at high nucleosome densities (one nucleosome per 160 base pairs of DNA) (A. Shimamura, D. Tremethick, and A. Worcel, Mol. Cell. Biol. 8:4257-4269, 1988). We report here that transcriptional repression may also be achieved at lower nucleosome densities (one nucleosome per 215 base pairs of DNA) when histone H1 is present. Removal of histone H1 from the minichromosomes with Biorex under conditions in which no nucleosome disruption was observed led to transcriptional activation. Transcriptional repression could be restored by adding histone H1 back to the H1-depleted minichromosomes. The levels of histone H1 that repressed the H1-depleted minichromosomes failed to repress transcription from free DNA templates present in trans. The assembly of transcription complexes onto the H1-depleted minichromosomes protected the 5S RNA gene from inactivation by histone H1.

1989 ◽  
Vol 9 (12) ◽  
pp. 5573-5584 ◽  
Author(s):  
A Shimamura ◽  
M Sapp ◽  
A Rodriguez-Campos ◽  
A Worcel

We have previously shown that transcription from a Xenopus 5S rRNA gene assembled into chromatin in vitro can be repressed in the absence of histone H1 at high nucleosome densities (one nucleosome per 160 base pairs of DNA) (A. Shimamura, D. Tremethick, and A. Worcel, Mol. Cell. Biol. 8:4257-4269, 1988). We report here that transcriptional repression may also be achieved at lower nucleosome densities (one nucleosome per 215 base pairs of DNA) when histone H1 is present. Removal of histone H1 from the minichromosomes with Biorex under conditions in which no nucleosome disruption was observed led to transcriptional activation. Transcriptional repression could be restored by adding histone H1 back to the H1-depleted minichromosomes. The levels of histone H1 that repressed the H1-depleted minichromosomes failed to repress transcription from free DNA templates present in trans. The assembly of transcription complexes onto the H1-depleted minichromosomes protected the 5S RNA gene from inactivation by histone H1.


Science ◽  
1991 ◽  
Vol 254 (5029) ◽  
pp. 238-245
Author(s):  
PJ Laybourn ◽  
JT Kadonaga

The relation between chromatin structure and transcriptional activity was examined by in vitro transcription analysis of chromatin reconstituted in the absence or presence of histone H1. To maintain well-defined template DNA, purified components were used in the reconstitution of chromatin. Reconstitution of nucleosomal cores to an average density of 1 nucleosome per 200 base pairs of DNA resulted in a mild reduction of basal RNA polymerase II transcription to 25 to 50 percent of that obtained with naked DNA templates. This nucleosome-mediated repression was due to nucleosomal cores located at the RNA start site and could not be counteracted by the sequence-specific transcription activators Sp1 and GAL4-VP16. When H1 was incorporated into the chromatin at 0.5 to 1.0 molecule per nucleosome (200 base pairs of DNA), RNA synthesis was reduced to 1 to 4 percent of that observed with chromatin containing only nucleosomal cores, and this H1-mediated repression could be counteracted by the addition of Sp1 or GAL4-VP16 (antirepression). With naked DNA templates, transcription was increased by a factor of 3 and 8 by Sp1 and GAL4-VP-16, respectively (true activation). With H1-repressed chromatin templates, however, the magnitude of transcriptional activation mediated by Sp1 and GAL4-VP16 was 90 and more than 200 times higher, respectively, because of the combined effects of true activation and antirepression. The data provide direct biochemical evidence that support and clarify previously proposed models in which there is depletion or reconfiguration of nucleosomal cores and histone H1 at the promoter regions of active genes.


1993 ◽  
Vol 13 (4) ◽  
pp. 2091-2103
Author(s):  
S Türkel ◽  
P J Farabaugh

Transcription of the Ty2-917 retrotransposon of Saccharomyces cerevisiae is modulated by a complex set of positive and negative elements, including a negative region located within the first open reading frame, TYA2. The negative region includes three downstream repression sites (DRSI, DRSII, and DRSIII). In addition, the negative region includes at least two downstream activation sites (DASs). This paper concerns the characterization of DASI. A 36-bp DASI oligonucleotide acts as an autonomous transcriptional activation site and includes two sequence elements which are both required for activation. We show that these sites bind in vitro the transcriptional activation protein GCN4 and that their activity in vivo responds to the level of GCN4 in the cell. We have termed the two sites GCN4 binding sites (GBS1 and GBS2). GBS1 is a high-affinity GCN4 binding site (dissociation constant, approximately 25 nM at 30 degrees C), binding GCN4 with about the affinity of a consensus UASGCN4, this though GBS1 includes two differences from the right half of the palindromic consensus site. GBS2 is more diverged from the consensus and binds GCN4 with about 20-fold-lower affinity. Nucleotides 13 to 36 of DASI overlap DRSII. Since DRSII is a transcriptional repression site, we tested whether DASI includes repression elements. We identify two sites flanking GBS2, both of which repress transcription activated by the consensus GCN4-specific upstream activation site (UASGCN4). One of these is repeated in the 12 bp immediately adjacent to DASI. Thus, in a 48-bp region of Ty2-917 are interspersed two positive and three negative transcriptional regulators. The net effect of the region must depend on the interaction of the proteins bound at these sites, which may include their competing for binding sites, and on the physiological control of the activity of these proteins.


2005 ◽  
Vol 25 (1) ◽  
pp. 324-335 ◽  
Author(s):  
Ho-Geun Yoon ◽  
Youngsok Choi ◽  
Philip A. Cole ◽  
Jiemin Wong

ABSTRACT A central question in histone code theory is how various codes are recognized and utilized in vivo. Here we show that TBL1 and TBLR1, two WD-40 repeat proteins in the corepressor SMRT/N-CoR complexes, are functionally redundant and essential for transcriptional repression by unliganded thyroid hormone receptors (TR) but not essential for transcriptional activation by liganded TR. TBL1 and TBLR1 bind preferentially to hypoacetylated histones H2B and H4 in vitro and have a critical role in targeting the corepressor complexes to chromatin in vivo. We show that targeting SMRT/N-CoR complexes to the deiodinase 1 gene (D1) requires at least two interactions, one between unliganded TR and SMRT/N-CoR and the other between TBL1/TBLR1 and hypoacetylated histones. Neither interaction alone is sufficient for the stable association of the corepressor complexes with the D1 promoter. Our data support a feed-forward working model in which deacetylation exerted by initial unstable recruitment of SMRT/N-CoR complexes via their interaction with unliganded TR generates a histone code that serves to stabilize their own recruitment. Similarly, we find that targeting of the Sin3 complex to pericentric heterochromatin may also follow this model. Our studies provide an in vivo example that a histone code is not read independently but is recognized in the context of other interactions.


1993 ◽  
Vol 13 (2) ◽  
pp. 1238-1250 ◽  
Author(s):  
K M Klucher ◽  
M Sommer ◽  
J T Kadonaga ◽  
D H Spector

To define mechanistically how the human cytomegalovirus (HCMV) major immediate-early (IE) proteins induce early-gene transcription, the IE1 72-kDa protein, the IE2 55-kDa protein, and the IE2 86-kDa protein were analyzed for their ability to activate transcription from an HCMV early promoter in vivo and in vitro. In transient-expression assays in U373MG astrocytoma/glioblastoma and HeLa cells, only the IE2 86-kDa protein was able to activate the HCMV early promoter to high levels. In HeLa cells, the IE1 72-kDa protein was able to activate the promoter to a low but detectable level, and the level of promoter activity observed in response to the IE2 86-kDa protein was increased synergistically following cotransfection of the constructs expressing both IE proteins. To examine the interaction of the HCMV IE proteins with the RNA polymerase II transcription machinery, we assayed the ability of Escherichia coli-synthesized proteins to activate the HCMV early promoter in nuclear extracts prepared from U373MG cells, HeLa cells, and Drosophila embryos. The results of the in vitro experiments correlated well with those obtained in vivo. The basal activity of the promoter was minimal in both the HeLa and U373MG extracts but was stimulated 6- to 10-fold by the IE2 86-kDa protein. With a histone H1-deficient extract from Drosophila embryos, the HCMV early promoter was quite active and was stimulated two- to fourfold by the IE2 86-kDa protein. Addition of histone H1 at 1 molecule per 40 to 50 bp of DNA template significantly repressed basal transcription from this promoter. However, the IE2 86-kDa protein, but none of the other IE proteins, was able to counteract the H1-mediated repression and stimulate transcription at least 10- to 20-fold. The promoter specificity of the activation was demonstrated by the inability of the IE2 86-kDa protein to activate the Drosophila Krüppel promoter in either the presence or absence of histone H1. These results suggest that one mechanism of transcription activation by the IE2 86-kDa protein involves antirepression.


2001 ◽  
Vol 69 (1) ◽  
pp. 538-542 ◽  
Author(s):  
Denis Dacheux ◽  
Ina Attree ◽  
Bertrand Toussaint

ABSTRACT Twelve Pseudomonas aeruginosa cystic fibrosis isolates that are not able to exert a type III secretion system (TTSS)-dependent cytotoxicity towards phagocytes have been further studied. The strains, although possessing TTSS genes and exsA, which encodes a positive regulator of the TTSS regulon, showed no transcriptional activation of the exsCBA regulatory operon. The expression of exsA in trans restored the in vitro secretion of TTSS proteins and ex vivo cytotoxicity.


2013 ◽  
Vol 203 (1) ◽  
pp. 57-71 ◽  
Author(s):  
Nikhil Raghuram ◽  
Hilmar Strickfaden ◽  
Darin McDonald ◽  
Kylie Williams ◽  
He Fang ◽  
...  

Histone H1 plays a crucial role in stabilizing higher order chromatin structure. Transcriptional activation, DNA replication, and chromosome condensation all require changes in chromatin structure and are correlated with the phosphorylation of histone H1. In this study, we describe a novel interaction between Pin1, a phosphorylation-specific prolyl isomerase, and phosphorylated histone H1. A sub-stoichiometric amount of Pin1 stimulated the dephosphorylation of H1 in vitro and modulated the structure of the C-terminal domain of H1 in a phosphorylation-dependent manner. Depletion of Pin1 destabilized H1 binding to chromatin only when Pin1 binding sites on H1 were present. Pin1 recruitment and localized histone H1 phosphorylation were associated with transcriptional activation independent of RNA polymerase II. We thus identify a novel form of histone H1 regulation through phosphorylation-dependent proline isomerization, which has consequences on overall H1 phosphorylation levels and the stability of H1 binding to chromatin.


2007 ◽  
Vol 402 (1) ◽  
pp. 163-173 ◽  
Author(s):  
Alex B. Lopez ◽  
Chuanping Wang ◽  
Charlie C. Huang ◽  
Ibrahim Yaman ◽  
Yi Li ◽  
...  

The adaptive response to amino acid limitation in mammalian cells inhibits global protein synthesis and promotes the expression of proteins that protect cells from stress. The arginine/lysine transporter, cat-1, is induced during amino acid starvation by transcriptional and post-transcriptional mechanisms. It is shown in the present study that the transient induction of cat-1 transcription is regulated by the stress response pathway that involves phosphorylation of the translation initiation factor, eIF2 (eukaryotic initiation factor-2). This phosphorylation induces expression of the bZIP (basic leucine zipper protein) transcription factors C/EBP (CCAAT/enhancer-binding protein)-β and ATF (activating transcription factor) 4, which in turn induces ATF3. Transfection experiments in control and mutant cells, and chromatin immunoprecipitations showed that ATF4 activates, whereas ATF3 represses cat-1 transcription, via an AARE (amino acid response element), TGATGAAAC, in the first exon of the cat-1 gene, which functions both in the endogenous and in a heterologous promoter. ATF4 and C/EBPβ activated transcription when expressed in transfected cells and they bound as heterodimers to the AARE in vitro. The induction of transcription by ATF4 was inhibited by ATF3, which also bound to the AARE as a heterodimer with C/EBPβ. These results suggest that the transient increase in cat-1 transcription is due to transcriptional activation caused by ATF4 followed by transcriptional repression by ATF3 via a feedback mechanism.


2004 ◽  
Vol 78 (12) ◽  
pp. 6459-6468 ◽  
Author(s):  
Jeffrey S. Johnson ◽  
Yvonne N. Osheim ◽  
Yuming Xue ◽  
Margaux R. Emanuel ◽  
Peter W. Lewis ◽  
...  

ABSTRACT Adenovirus protein VII is the major protein component of the viral nucleoprotein core. It is highly basic, and an estimated 1070 copies associate with each viral genome, forming a tightly condensed DNA-protein complex. We have investigated DNA condensation, transcriptional repression, and specific protein binding by protein VII. Xenopus oocytes were microinjected with mRNA encoding HA-tagged protein VII and prepared for visualization of lampbrush chromosomes. Immunostaining revealed that protein VII associated in a uniform manner across entire chromosomes. Furthermore, the chromosomes were significantly condensed and transcriptionally silenced, as judged by the dramatic disappearance of transcription loops characteristic of lampbrush chromosomes. During infection, the protein VII-DNA complex may be the initial substrate for transcriptional activation by cellular factors and the viral E1A protein. To investigate this possibility, mRNAs encoding E1A and protein VII were comicroinjected into Xenopus oocytes. Interestingly, whereas E1A did not associate with chromosomes in the absence of protein VII, expression of both proteins together resulted in significant association of E1A with lampbrush chromosomes. Binding studies with proteins produced in bacteria or human cells or by in vitro translation showed that E1A and protein VII can interact in vitro. Structure-function analysis revealed that an N-terminal region of E1A is responsible for binding to protein VII. These studies define the in vivo functions of protein VII in DNA binding, condensation, and transcriptional repression and indicate a role in E1A-mediated transcriptional activation of viral genes.


Sign in / Sign up

Export Citation Format

Share Document