EMBRYONIC STEM CELLS: Stem Cell Science Advances as Politics Stall

Science ◽  
2007 ◽  
Vol 316 (5833) ◽  
pp. 1825-1825
Author(s):  
C. Holden
2006 ◽  
Vol 174 (6) ◽  
pp. 743-746 ◽  
Author(s):  
Mitch Leslie

Talk of policy has dominated talk of science for those interested in embryonic stem cell science. But research is continuing, and the advances are making clear why embryonic stem cells are such an important scientific and medical resource.


2010 ◽  
Vol 38 (2) ◽  
pp. 342-351 ◽  
Author(s):  
William M. Sage

Essays on stem cell policy seem to fall into three categories. Some essays in this collection are about logic and principles. Others are about practices and beliefs. The former group draws lines and defends them, a normative project. The latter group attempts to explain the lines that already exist, a descriptive project that may have important normative goals. Still other essays, by scientists, are about growing stem cell lines instead of drawing them.The purpose of this essay is to situate the lines being drawn around stem cell science in the larger landscape of health policy. I am interested in the things that cause health policy to take particular directions and the consequences of those directions for cost, access, and quality — all of which are determined in part by biomedical innovations such as those potentially derived from stem cells.


2007 ◽  
Vol 33 (4) ◽  
pp. 541-565 ◽  
Author(s):  
Debora Spar ◽  
Anna Harrington

Since 2001, stem cell science in the United States has been explicitly constrained by federal prohibitions. Under an executive order announced by President George W. Bush on August 9 of that year, U.S. researchers can only receive federal funding for work done on the limited number of embryonic stem cell lines (an estimated sixty to sevent-eight) created prior to the executive order. Continued research on embryonic stem cells (ESCs) is not expressly prohibited. But, under the Bush administration's executive order, no federal funds can be used to develop new embryonic stem cells lines, or even to work on new lines developed after August 2001.The problems with these restrictions, according to their critics, are threefold. First, they sharply limit the funds available to a high-cost, early-stage endeavor, limiting the pace of scientific discovery in the process. Second, they force stem cell researchers to maintain an administratively absurd line between research conducted in federally-funded laboratories (which include most university facilities) and that conducted in spaces free of federal funds.


2021 ◽  
Vol 22 (9) ◽  
pp. 5011
Author(s):  
Daehwan Kim ◽  
Sangho Roh

Stem cell research is essential not only for the research and treatment of human diseases, but also for the genetic preservation and improvement of animals. Since embryonic stem cells (ESCs) were established in mice, substantial efforts have been made to establish true ESCs in many species. Although various culture conditions were used to establish ESCs in cattle, the capturing of true bovine ESCs (bESCs) has not been achieved. In this review, the difficulty of establishing bESCs with various culture conditions is described, and the characteristics of proprietary induced pluripotent stem cells and extended pluripotent stem cells are introduced. We conclude with a suggestion of a strategy for establishing true bESCs.


2010 ◽  
Vol 289 (2) ◽  
pp. 208-216 ◽  
Author(s):  
Shaker A. Mousa ◽  
Thangirala Sudha ◽  
Evgeny Dyskin ◽  
Usawadee Dier ◽  
Christine Gallati ◽  
...  

1989 ◽  
Vol 9 (10) ◽  
pp. 4563-4567
Author(s):  
T H Vu ◽  
G R Martin ◽  
P Lee ◽  
D Mark ◽  
A Wang ◽  
...  

Embryonal carcinoma and embryonic stem cells expressed a novel form of platelet-derived growth factor receptor mRNA which was approximately 1,100 base pairs shorter than the 5.3-kilobase (kb) transcript expressed in fibroblasts and other cell types. The 4.2-kb stem cell transcript was initiated within the genomic region immediately upstream of exon 6 of the 5.3-kb transcript and therefore lacked the first five exons, which encode much of the extracellular domain of the receptor expressed in fibroblasts. In stem cells, the short form was predominant, although both forms were present at low levels. Following differentiation in vitro, expression levels of the long form increased dramatically. These findings suggest that during early embryogenesis, a stem cell-specific promoter is used in a stage- and cell type-specific manner to express a form of the platelet-derived growth factor receptor that lacks much of the extracellular domain and may function independently of ligand.


2020 ◽  
Vol 133 (20) ◽  
pp. jcs255166

ABSTRACTFirst Person is a series of interviews with the first authors of a selection of papers published in Journal of Cell Science, helping early-career researchers promote themselves alongside their papers. Federico Pecori is first author on ‘Mucin-type O-glycosylation controls pluripotency in mouse embryonic stem cells via Wnt receptor endocytosis’, published in JCS. Federico is a PhD student in the lab of Shoko Nishihara at the Laboratory of Cell Biology, Department of Bioinformatics, Soka University, Tokyo, Japan, where he is interested in the mechanisms regulating stem cell identity.


2021 ◽  
Vol 26 ◽  
pp. 169-191
Author(s):  
Emma E. Redfield ◽  
Erin K. Luciano ◽  
Monica J. Sewell ◽  
Lucas A. Mitzel ◽  
Isaac J. Sanford ◽  
...  

This study looks at the number of clinical trials involving specific stem cell types. To our knowledge, this has never been done before. Stem cell clinical trials that were conducted at locations in the US and registered on the National Institutes of Health database at ‘clinicaltrials.gov’ were categorized according to the type of stem cell used (adult, cancer, embryonic, perinatal, or induced pluripotent) and the year that the trial was registered. From 1999 to 2014, there were 2,357 US stem cell clinical trials registered on ‘clinicaltrials.gov,’ and 89 percent were from adult stem cells and only 0.12 percent were from embryonic stem cells. This study concludes that embryonic stem cells should no longer be used for clinical study because of their irrelevance, moral questions, and induced pluripotent stem cells.


Zygote ◽  
2021 ◽  
pp. 1-6
Author(s):  
Gerelchimeg Bou ◽  
Shimeng Guo ◽  
Jia Guo ◽  
Zhuang Chai ◽  
Jianchao Zhao ◽  
...  

Summary The efficiency of establishing pig pluripotent embryonic stem cell clones from blastocysts is still low. The transcription factor Nanog plays an important role in maintaining the pluripotency of mouse and human embryonic stem cells. Adequate activation of Nanog has been reported to increase the efficiency of establishing mouse embryonic stem cells from 3.5 day embryos. In mouse, Nanog starts to be strongly expressed as early as the morula stage, whereas in porcine NANOG starts to be strongly expressed by the late blastocyst stage. Therefore, here we investigated both the effect of expressing NANOG on porcine embryos early from the morula stage and the efficiency of porcine pluripotent embryonic stem cell clone formation. Compared with intact porcine embryos, NANOG overexpression induced a lower blastocyst rate, and did not show any advantages for embryo development and pluripotent embryonic stem cell line formation. These results indicated that, although NANOG is important pluripotent factor, NANOG overexpression is unnecessary for the initial formation of porcine pluripotent embryonic stem cell clones in vitro.


Sign in / Sign up

Export Citation Format

Share Document