scholarly journals All-optical machine learning using diffractive deep neural networks

Science ◽  
2018 ◽  
Vol 361 (6406) ◽  
pp. 1004-1008 ◽  
Author(s):  
Xing Lin ◽  
Yair Rivenson ◽  
Nezih T. Yardimci ◽  
Muhammed Veli ◽  
Yi Luo ◽  
...  

Deep learning has been transforming our ability to execute advanced inference tasks using computers. Here we introduce a physical mechanism to perform machine learning by demonstrating an all-optical diffractive deep neural network (D2NN) architecture that can implement various functions following the deep learning–based design of passive diffractive layers that work collectively. We created 3D-printed D2NNs that implement classification of images of handwritten digits and fashion products, as well as the function of an imaging lens at a terahertz spectrum. Our all-optical deep learning framework can perform, at the speed of light, various complex functions that computer-based neural networks can execute; will find applications in all-optical image analysis, feature detection, and object classification; and will also enable new camera designs and optical components that perform distinctive tasks using D2NNs.

2019 ◽  
Vol 20 (S16) ◽  
Author(s):  
Min Zeng ◽  
Min Li ◽  
Fang-Xiang Wu ◽  
Yaohang Li ◽  
Yi Pan

Abstract Background Essential proteins are crucial for cellular life and thus, identification of essential proteins is an important topic and a challenging problem for researchers. Recently lots of computational approaches have been proposed to handle this problem. However, traditional centrality methods cannot fully represent the topological features of biological networks. In addition, identifying essential proteins is an imbalanced learning problem; but few current shallow machine learning-based methods are designed to handle the imbalanced characteristics. Results We develop DeepEP based on a deep learning framework that uses the node2vec technique, multi-scale convolutional neural networks and a sampling technique to identify essential proteins. In DeepEP, the node2vec technique is applied to automatically learn topological and semantic features for each protein in protein-protein interaction (PPI) network. Gene expression profiles are treated as images and multi-scale convolutional neural networks are applied to extract their patterns. In addition, DeepEP uses a sampling method to alleviate the imbalanced characteristics. The sampling method samples the same number of the majority and minority samples in a training epoch, which is not biased to any class in training process. The experimental results show that DeepEP outperforms traditional centrality methods. Moreover, DeepEP is better than shallow machine learning-based methods. Detailed analyses show that the dense vectors which are generated by node2vec technique contribute a lot to the improved performance. It is clear that the node2vec technique effectively captures the topological and semantic properties of PPI network. The sampling method also improves the performance of identifying essential proteins. Conclusion We demonstrate that DeepEP improves the prediction performance by integrating multiple deep learning techniques and a sampling method. DeepEP is more effective than existing methods.


2019 ◽  
Vol 8 (1) ◽  
Author(s):  
Yi Luo ◽  
Deniz Mengu ◽  
Nezih T. Yardimci ◽  
Yair Rivenson ◽  
Muhammed Veli ◽  
...  

AbstractDeep learning has been transformative in many fields, motivating the emergence of various optical computing architectures. Diffractive optical network is a recently introduced optical computing framework that merges wave optics with deep-learning methods to design optical neural networks. Diffraction-based all-optical object recognition systems, designed through this framework and fabricated by 3D printing, have been reported to recognize hand-written digits and fashion products, demonstrating all-optical inference and generalization to sub-classes of data. These previous diffractive approaches employed monochromatic coherent light as the illumination source. Here, we report a broadband diffractive optical neural network design that simultaneously processes a continuum of wavelengths generated by a temporally incoherent broadband source to all-optically perform a specific task learned using deep learning. We experimentally validated the success of this broadband diffractive neural network architecture by designing, fabricating and testing seven different multi-layer, diffractive optical systems that transform the optical wavefront generated by a broadband THz pulse to realize (1) a series of tuneable, single-passband and dual-passband spectral filters and (2) spatially controlled wavelength de-multiplexing. Merging the native or engineered dispersion of various material systems with a deep-learning-based design strategy, broadband diffractive neural networks help us engineer the light–matter interaction in 3D, diverging from intuitive and analytical design methods to create task-specific optical components that can all-optically perform deterministic tasks or statistical inference for optical machine learning.


2020 ◽  
Vol 79 (41-42) ◽  
pp. 30387-30395
Author(s):  
Stavros Ntalampiras

Abstract Predicting the emotional responses of humans to soundscapes is a relatively recent field of research coming with a wide range of promising applications. This work presents the design of two convolutional neural networks, namely ArNet and ValNet, each one responsible for quantifying arousal and valence evoked by soundscapes. We build on the knowledge acquired from the application of traditional machine learning techniques on the specific domain, and design a suitable deep learning framework. Moreover, we propose the usage of artificially created mixed soundscapes, the distributions of which are located between the ones of the available samples, a process that increases the variance of the dataset leading to significantly better performance. The reported results outperform the state of the art on a soundscape dataset following Schafer’s standardized categorization considering both sound’s identity and the respective listening context.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dipendra Jha ◽  
Vishu Gupta ◽  
Logan Ward ◽  
Zijiang Yang ◽  
Christopher Wolverton ◽  
...  

AbstractThe application of machine learning (ML) techniques in materials science has attracted significant attention in recent years, due to their impressive ability to efficiently extract data-driven linkages from various input materials representations to their output properties. While the application of traditional ML techniques has become quite ubiquitous, there have been limited applications of more advanced deep learning (DL) techniques, primarily because big materials datasets are relatively rare. Given the demonstrated potential and advantages of DL and the increasing availability of big materials datasets, it is attractive to go for deeper neural networks in a bid to boost model performance, but in reality, it leads to performance degradation due to the vanishing gradient problem. In this paper, we address the question of how to enable deeper learning for cases where big materials data is available. Here, we present a general deep learning framework based on Individual Residual learning (IRNet) composed of very deep neural networks that can work with any vector-based materials representation as input to build accurate property prediction models. We find that the proposed IRNet models can not only successfully alleviate the vanishing gradient problem and enable deeper learning, but also lead to significantly (up to 47%) better model accuracy as compared to plain deep neural networks and traditional ML techniques for a given input materials representation in the presence of big data.


Algorithms ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 39
Author(s):  
Carlos Lassance ◽  
Vincent Gripon ◽  
Antonio Ortega

Deep Learning (DL) has attracted a lot of attention for its ability to reach state-of-the-art performance in many machine learning tasks. The core principle of DL methods consists of training composite architectures in an end-to-end fashion, where inputs are associated with outputs trained to optimize an objective function. Because of their compositional nature, DL architectures naturally exhibit several intermediate representations of the inputs, which belong to so-called latent spaces. When treated individually, these intermediate representations are most of the time unconstrained during the learning process, as it is unclear which properties should be favored. However, when processing a batch of inputs concurrently, the corresponding set of intermediate representations exhibit relations (what we call a geometry) on which desired properties can be sought. In this work, we show that it is possible to introduce constraints on these latent geometries to address various problems. In more detail, we propose to represent geometries by constructing similarity graphs from the intermediate representations obtained when processing a batch of inputs. By constraining these Latent Geometry Graphs (LGGs), we address the three following problems: (i) reproducing the behavior of a teacher architecture is achieved by mimicking its geometry, (ii) designing efficient embeddings for classification is achieved by targeting specific geometries, and (iii) robustness to deviations on inputs is achieved via enforcing smooth variation of geometry between consecutive latent spaces. Using standard vision benchmarks, we demonstrate the ability of the proposed geometry-based methods in solving the considered problems.


2018 ◽  
Vol 7 (2.7) ◽  
pp. 614 ◽  
Author(s):  
M Manoj krishna ◽  
M Neelima ◽  
M Harshali ◽  
M Venu Gopala Rao

The image classification is a classical problem of image processing, computer vision and machine learning fields. In this paper we study the image classification using deep learning. We use AlexNet architecture with convolutional neural networks for this purpose. Four test images are selected from the ImageNet database for the classification purpose. We cropped the images for various portion areas and conducted experiments. The results show the effectiveness of deep learning based image classification using AlexNet.  


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lara Lloret Iglesias ◽  
Pablo Sanz Bellón ◽  
Amaia Pérez del Barrio ◽  
Pablo Menéndez Fernández-Miranda ◽  
David Rodríguez González ◽  
...  

AbstractDeep learning is nowadays at the forefront of artificial intelligence. More precisely, the use of convolutional neural networks has drastically improved the learning capabilities of computer vision applications, being able to directly consider raw data without any prior feature extraction. Advanced methods in the machine learning field, such as adaptive momentum algorithms or dropout regularization, have dramatically improved the convolutional neural networks predicting ability, outperforming that of conventional fully connected neural networks. This work summarizes, in an intended didactic way, the main aspects of these cutting-edge techniques from a medical imaging perspective.


2021 ◽  
Author(s):  
Wael Alnahari

Abstract In this paper, I proposed an iris recognition system by using deep learning via neural networks (CNN). Although CNN is used for machine learning, the recognition is achieved by building a non-trained CNN network with multiple layers. The main objective of the code the test pictures’ category (aka person name) with a high accuracy rate after having extracted enough features from training pictures of the same category which are obtained from a that I added to the code. I used IITD iris which included 10 iris pictures for 223 people.


2021 ◽  
Author(s):  
Ramy Abdallah ◽  
Clare E. Bond ◽  
Robert W.H. Butler

<p>Machine learning is being presented as a new solution for a wide range of geoscience problems. Primarily machine learning has been used for 3D seismic data processing, seismic facies analysis and well log data correlation. The rapid development in technology with open-source artificial intelligence libraries and the accessibility of affordable computer graphics processing units (GPU) makes the application of machine learning in geosciences increasingly tractable. However, the application of artificial intelligence in structural interpretation workflows of subsurface datasets is still ambiguous. This study aims to use machine learning techniques to classify images of folds and fold-thrust structures. Here we show that convolutional neural networks (CNNs) as supervised deep learning techniques provide excellent algorithms to discriminate between geological image datasets. Four different datasets of images have been used to train and test the machine learning models. These four datasets are a seismic character dataset with five classes (faults, folds, salt, flat layers and basement), folds types with three classes (buckle, chevron and conjugate), fault types with three classes (normal, reverse and thrust) and fold-thrust geometries with three classes (fault bend fold, fault propagation fold and detachment fold). These image datasets are used to investigate three machine learning models. One Feedforward linear neural network model and two convolutional neural networks models (Convolution 2d layer transforms sequential model and Residual block model (ResNet with 9, 34, and 50 layers)). Validation and testing datasets forms a critical part of testing the model’s performance accuracy. The ResNet model records the highest performance accuracy score, of the machine learning models tested. Our CNN image classification model analysis provides a framework for applying machine learning to increase structural interpretation efficiency, and shows that CNN classification models can be applied effectively to geoscience problems. The study provides a starting point to apply unsupervised machine learning approaches to sub-surface structural interpretation workflows.</p>


Sign in / Sign up

Export Citation Format

Share Document