scholarly journals A sustainable wood biorefinery for low–carbon footprint chemicals production

Science ◽  
2020 ◽  
Vol 367 (6484) ◽  
pp. 1385-1390 ◽  
Author(s):  
Yuhe Liao ◽  
Steven-Friso Koelewijn ◽  
Gil Van den Bossche ◽  
Joost Van Aelst ◽  
Sander Van den Bosch ◽  
...  

The profitability and sustainability of future biorefineries are dependent on efficient feedstock use. Therefore, it is essential to valorize lignin when using wood. We have developed an integrated biorefinery that converts 78 weight % (wt %) of birch into xylochemicals. Reductive catalytic fractionation of the wood produces a carbohydrate pulp amenable to bioethanol production and a lignin oil. After extraction of the lignin oil, the crude, unseparated mixture of phenolic monomers is catalytically funneled into 20 wt % of phenol and 9 wt % of propylene (on the basis of lignin weight) by gas-phase hydroprocessing and dealkylation; the residual phenolic oligomers (30 wt %) are used in printing ink as replacements for controversial para-nonylphenol. A techno-economic analysis predicts an economically competitive production process, and a life-cycle assessment estimates a lower carbon dioxide footprint relative to that of fossil-based production.

2020 ◽  
Vol 313 ◽  
pp. 123675 ◽  
Author(s):  
Yingji Wu ◽  
Shengbo Ge ◽  
Changlei Xia ◽  
Liping Cai ◽  
Changtong Mei ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2916
Author(s):  
Jérôme Payet ◽  
Titouan Greffe

Worldwide electricity consumption increases by 2.6% each year. Greenhouse gas emissions due to electricity production raise by 2.1% per year on average. The development of efficient low-carbon-footprint renewable energy systems is urgently needed. CPVMatch investigates the feasibility of mirror or lens-based High Concentration Photovoltaic (HCPV) systems. Thanks to innovative four junction solar cells, new glass coatings, Position Sensitive Detectors (PSD), and DC/DC converters, it is possible to reach concentration levels higher than 800× and a module efficiency between 36.7% and 41.6%. From a circular economy’s standpoint, the use of concentration technologies lowers the need in active material, increases recyclability, and reduces the risk of material contamination. By using the Life Cycle Assessment method, it is demonstrated that HCPV presents a carbon footprint ranking between 16.4 and 18.4 g CO2-eq/kWh. A comparison with other energy means for 16 impact categories including primary energy demand and particle emissions points out that the environmental footprint of HCPV is typically 50 to 100 times lower than fossil fuels footprint. HCPV’s footprint is also three times lower than that of crystalline photovoltaic solutions and is close to the environmental performance of wind power and hydropower.


Author(s):  
Zhijie Feng ◽  
Lin Zhao ◽  
Shuai Wang ◽  
Qian Hou

The purpose of this paper was to analyze the development trend of hazardous chemical packaging towards low carbon economy from both qualitative and quantitative perspectives. Four types of relatively small volume packaging with volume/weight less than 450L/400kg, respectively, and three intermediate bulk containers (IBCs), which are widely used for hazardous chemicals were studied to calculate the carbon footprint (CF) from cradle to grave using life cycle assessment (LCA) method and to predict the future carbon emission of hazardous chemical packaging in the next five years (2016-2020), based on the export data of Tianjin Port in China. Grey model (GM) was adopted in the prediction. The results showed that majority of IBCs have lower carbon footprint than other types when the packaging contained same amount of same hazardous chemical. With the development of international trading, the demand of hazardous chemicals will increase as well. As the result, carbon emission generated by hazardous chemical packaging will increase accordingly. However, based on GM simulation result, increasing the amount of IBC use will effectively reduce the relative amount of carbon emission.


Processes ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 818
Author(s):  
Shihu Zhong ◽  
Rong Chen ◽  
Fei Song ◽  
Yanmin Xu

Carbon emissions are inevitably linked to lifestyle and consumption behaviours, and the concept of “carbon footprinting” is now well-recognised beyond academia. Life cycle assessment (LCA) is one of the primary tools for assessing carbon footprints. The aim of this paper is to present a systematic review of literatures focusing on carbon footprint calculated with life cycle assessment. We used CiteSpace software to draw the knowledge map of related research to identify and trace the knowledge base and frontier terminology. It was found that the LCA application in respects of carbon footprint studies was completed mainly for the following aspect: beef production and dairy industry, seafood and fishery, nutrition, urban structure and energy use. The CiteSpace analysis showed the development path of the above aspects, for example, beef production and dairy industry has been a long-term topic in this kind of research, while the topic of nutrition appeared in recent years. There was also a cluster of literature discussing footprint evaluation tools, such as comparing LCA with input–output analysis. The CiteSpace analysis indicated that earlier methodological literature still plays an important role in recent research. Moreover, through the analysis of burst keywords, it was found that agriculture productions (dairy, meat, fish, crop) as well as global climate issues (greenhouse gases emission, global warming potential) have always been the areas of concern, which matches the result of co-citation analysis. Building materials (low-carbon building, natural buildings, sustainable buildings) and soil issues (soil carbon sequestration, soil organic carbon) are the topics of recent concern, which could arouse the attention of follower-up researchers.


2020 ◽  
Vol 13 (1) ◽  
pp. 158
Author(s):  
Sishen Wang ◽  
Hao Wang ◽  
Pengyu Xie ◽  
Xiaodan Chen

Low-carbon transport system is desired for sustainable cities. The study aims to compare carbon footprint of two transportation modes in campus transit, bus and bike-share systems, using life-cycle assessment (LCA). A case study was conducted for the four-campus (College Ave, Cook/Douglass, Busch, Livingston) transit system at Rutgers University (New Brunswick, NJ). The life-cycle of two systems were disaggregated into four stages, namely, raw material acquisition and manufacture, transportation, operation and maintenance, and end-of-life. Three uncertain factors—fossil fuel type, number of bikes provided, and bus ridership—were set as variables for sensitivity analysis. Normalization method was used in two impact categories to analyze and compare environmental impacts. The results show that the majority of CO2 emission and energy consumption comes from the raw material stage (extraction and upstream production) of the bike-share system and the operation stage of the campus bus system. The CO2 emission and energy consumption of the current campus bus system are 46 and 13 times of that of the proposed bike-share system, respectively. Three uncertain factors can influence the results: (1) biodiesel can significantly reduce CO2 emission and energy consumption of the current campus bus system; (2) the increased number of bikes increases CO2 emission of the bike-share system; (3) the increase of bus ridership may result in similar impact between two systems. Finally, an alternative hybrid transit system is proposed that uses campus buses to connect four campuses and creates a bike-share system to satisfy travel demands within each campus. The hybrid system reaches the most environmentally friendly state when 70% passenger-miles provided by campus bus and 30% by bike-share system. Further research is needed to consider the uncertainty of biking behavior and travel choice in LCA. Applicable recommendations include increasing ridership of campus buses and building a bike-share in campus to support the current campus bus system. Other strategies such as increasing parking fees and improving biking environment can also be implemented to reduce automobile usage and encourage biking behavior.


2021 ◽  
Vol 13 (7) ◽  
pp. 3660
Author(s):  
Rathna Hor ◽  
Phanna Ly ◽  
Agusta Samodra Putra ◽  
Riaru Ishizaki ◽  
Tofael Ahamed ◽  
...  

Traditional Cambodian food has higher nutrient balances and is environmentally sustainable compared to conventional diets. However, there is a lack of knowledge and evidence on nutrient intake and the environmental greenness of traditional food at different age distributions. The relationship between nutritional intake and environmental impact can be evaluated using carbon dioxide (CO2) emissions from agricultural production based on life cycle assessment (LCA). The objective of this study was to estimate the CO2 equivalent (eq) emissions from the traditional Cambodian diet using LCA, starting at each agricultural production phase. A one-year food consumption scenario with the traditional diet was established. Five breakfast (BF1–5) and seven lunch and dinner (LD1–7) food sets were consumed at the same rate and compared using LCA. The results showed that BF1 and LD2 had the lowest and highest emissions (0.3 Mt CO2 eq/yr and 1.2 Mt CO2 eq/yr, respectively). The food calories, minerals, and vitamins met the recommended dietary allowance. The country’s existing food production system generates CO2 emissions of 9.7 Mt CO2 eq/yr, with the proposed system reducing these by 28.9% to 6.9 Mt CO2 eq/yr. The change in each food item could decrease emissions depending on the type and quantity of the food set, especially meat and milk consumption.


Sign in / Sign up

Export Citation Format

Share Document