scholarly journals A ubiquitin ligase mediates target-directed microRNA decay independently of tailing and trimming

Science ◽  
2020 ◽  
pp. eabc9546
Author(s):  
Jaeil Han ◽  
Collette A. LaVigne ◽  
Benjamin T. Jones ◽  
He Zhang ◽  
Frank Gillett ◽  
...  

MicroRNAs (miRNAs) act in concert with Argonaute (AGO) proteins to repress target mRNAs. After AGO loading, miRNAs generally exhibit slow turnover. An important exception occurs when miRNAs encounter highly complementary targets, which can trigger a process termed target-directed microRNA degradation (TDMD). During TDMD, miRNAs undergo tailing and trimming, suggesting that this is an important step in the decay mechanism. Here, we identified a cullin-RING ubiquitin ligase (CRL), containing the substrate adapter ZSWIM8, that mediated TDMD. The ZSWIM8 CRL interacted with AGO proteins, promoted TDMD in a tailing and trimming-independent manner, and regulated miRNA expression in multiple cell types. These findings suggest a model in which the ZSWIM8 ubiquitin ligase mediates TDMD by directing proteasomal decay of miRNA-containing complexes engaged with highly complementary targets.


2012 ◽  
Vol 40 (1) ◽  
pp. 215-218 ◽  
Author(s):  
Jamie J.L. Williams ◽  
Timothy M. Palmer

The anti-inflammatory effects of the prototypical second messenger cAMP have been extensively documented in multiple cell types. One mechanism by which these effects are achieved is via Epac1 (exchange protein directly activated by cAMP 1)-dependent induction of SOCS-3 (suppressor of cytokine signalling 3), which binds and inhibits specific class I cytokine receptors. One important aspect of SOCS-3 functionality is its role as the specificity determinant within an E3 ubiquitin ligase complex which targets cellular substrates for polyubiquitylation and proteasomal degradation. In the present review, we describe key inhibitory processes that serve to reduce cytokine receptor signalling, focusing primarily on SOCS protein function and regulation. We also outline a strategy we have developed to identify novel ubiquitylated substrates for the Epac1-inducible SOCS-3 E3 ubiquitin ligase complex following purification of the ubiquitinome. It is anticipated that identifying substrates for the Epac1-regulated SOCS-3 E3 ubiquitin ligase, and assessment of their functional significance, may pinpoint new sites for therapeutic intervention that would achieve therapeutic efficacy of cAMP-elevating drugs while minimizing the adverse effects usually associated with these agents.



2021 ◽  
Vol 3 (2) ◽  
pp. 166-181 ◽  
Author(s):  
Alexandra A. C. Newman ◽  
Vlad Serbulea ◽  
Richard A. Baylis ◽  
Laura S. Shankman ◽  
Xenia Bradley ◽  
...  


Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 630
Author(s):  
Huili Lyu ◽  
Cody M. Elkins ◽  
Jessica L. Pierce ◽  
C. Henrique Serezani ◽  
Daniel S. Perrien

Excess inflammation and canonical BMP receptor (BMPR) signaling are coinciding hallmarks of the early stages of injury-induced endochondral heterotopic ossification (EHO), especially in the rare genetic disease fibrodysplasia ossificans progressiva (FOP). Multiple inflammatory signaling pathways can synergistically enhance BMP-induced Smad1/5/8 activity in multiple cell types, suggesting the importance of pathway crosstalk in EHO and FOP. Toll-like receptors (TLRs) and IL-1 receptors mediate many of the earliest injury-induced inflammatory signals largely via MyD88-dependent pathways. Thus, the hypothesis that MyD88-dependent signaling is required for EHO was tested in vitro and in vivo using global or Pdgfrα-conditional deletion of MyD88 in FOP mice. As expected, IL-1β or LPS synergistically increased Activin A (ActA)-induced phosphorylation of Smad 1/5 in fibroadipoprogenitors (FAPs) expressing Alk2R206H. However, conditional deletion of MyD88 in Pdgfrα-positive cells of FOP mice did not significantly alter the amount of muscle injury-induced EHO. Even more surprisingly, injury-induced EHO was not significantly affected by global deletion of MyD88. These studies demonstrate that MyD88-dependent signaling is dispensable for injury-induced EHO in FOP mice.



2021 ◽  
Vol 22 (7) ◽  
pp. 3649
Author(s):  
Patricia Ramos-Ramírez ◽  
Omar Tliba

Glucocorticoids (GCs) act via the GC receptor (GR), a receptor ubiquitously expressed in the body where it drives a broad spectrum of responses within distinct cell types and tissues, which vary in strength and specificity. The variability of GR-mediated cell responses is further extended by the existence of GR isoforms, such as GRα and GRβ, generated through alternative splicing mechanisms. While GRα is the classic receptor responsible for GC actions, GRβ has been implicated in the impairment of GRα-mediated activities. Interestingly, in contrast to the popular belief that GRβ actions are restricted to its dominant-negative effects on GRα-mediated responses, GRβ has been shown to have intrinsic activities and “directly” regulates a plethora of genes related to inflammatory process, cell communication, migration, and malignancy, each in a GRα-independent manner. Furthermore, GRβ has been associated with increased cell migration, growth, and reduced sensitivity to GC-induced apoptosis. We will summarize the current knowledge of GRβ-mediated responses, with a focus on the GRα-independent/intrinsic effects of GRβ and the associated non-canonical signaling pathways. Where appropriate, potential links to airway inflammatory diseases will be highlighted.



2016 ◽  
Vol 113 (34) ◽  
pp. E4995-E5004 ◽  
Author(s):  
Wen Lu ◽  
Michael Winding ◽  
Margot Lakonishok ◽  
Jill Wildonger ◽  
Vladimir I. Gelfand

Cytoplasmic streaming in Drosophila oocytes is a microtubule-based bulk cytoplasmic movement. Streaming efficiently circulates and localizes mRNAs and proteins deposited by the nurse cells across the oocyte. This movement is driven by kinesin-1, a major microtubule motor. Recently, we have shown that kinesin-1 heavy chain (KHC) can transport one microtubule on another microtubule, thus driving microtubule–microtubule sliding in multiple cell types. To study the role of microtubule sliding in oocyte cytoplasmic streaming, we used a Khc mutant that is deficient in microtubule sliding but able to transport a majority of cargoes. We demonstrated that streaming is reduced by genomic replacement of wild-type Khc with this sliding-deficient mutant. Streaming can be fully rescued by wild-type KHC and partially rescued by a chimeric motor that cannot move organelles but is active in microtubule sliding. Consistent with these data, we identified two populations of microtubules in fast-streaming oocytes: a network of stable microtubules anchored to the actin cortex and free cytoplasmic microtubules that moved in the ooplasm. We further demonstrated that the reduced streaming in sliding-deficient oocytes resulted in posterior determination defects. Together, we propose that kinesin-1 slides free cytoplasmic microtubules against cortically immobilized microtubules, generating forces that contribute to cytoplasmic streaming and are essential for the refinement of posterior determinants.



Gene Therapy ◽  
2021 ◽  
Author(s):  
A. S. Mathew ◽  
C. M. Gorick ◽  
R. J. Price

AbstractGene delivery via focused ultrasound (FUS) mediated blood-brain barrier (BBB) opening is a disruptive therapeutic modality. Unlocking its full potential will require an understanding of how FUS parameters (e.g., peak-negative pressure (PNP)) affect transfected cell populations. Following plasmid (mRuby) delivery across the BBB with 1 MHz FUS, we used single-cell RNA-sequencing to ascertain that distributions of transfected cell types were highly dependent on PNP. Cells of the BBB (i.e., endothelial cells, pericytes, and astrocytes) were enriched at 0.2 MPa PNP, while transfection of cells distal to the BBB (i.e., neurons, oligodendrocytes, and microglia) was augmented at 0.4 MPa PNP. PNP-dependent differential gene expression was observed for multiple cell types. Cell stress genes were upregulated proportional to PNP, independent of cell type. Our results underscore how FUS may be tuned to bias transfection toward specific brain cell types in vivo and predict how those cells will respond to transfection.



2021 ◽  
Vol 8 (4) ◽  
pp. 42
Author(s):  
Sonia Stefanovic ◽  
Heather C. Etchevers ◽  
Stéphane Zaffran

Anomalies in the cardiac outflow tract (OFT) are among the most frequent congenital heart defects (CHDs). During embryogenesis, the cardiac OFT is a dynamic structure at the arterial pole of the heart. Heart tube elongation occurs by addition of cells from pharyngeal, splanchnic mesoderm to both ends. These progenitor cells, termed the second heart field (SHF), were first identified twenty years ago as essential to the growth of the forming heart tube and major contributors to the OFT. Perturbation of SHF development results in common forms of CHDs, including anomalies of the great arteries. OFT development also depends on paracrine interactions between multiple cell types, including myocardial, endocardial and neural crest lineages. In this publication, dedicated to Professor Andriana Gittenberger-De Groot and her contributions to the field of cardiac development and CHDs, we review some of her pioneering studies of OFT development with particular interest in the diverse origins of the many cell types that contribute to the OFT. We also discuss the clinical implications of selected key findings for our understanding of the etiology of CHDs and particularly OFT malformations.



2016 ◽  
Vol 6 (4) ◽  
pp. 973-986 ◽  
Author(s):  
Junchen Gu ◽  
Michael Stevens ◽  
Xiaoyun Xing ◽  
Daofeng Li ◽  
Bo Zhang ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document