Soil age alters the global silicon cycle

Science ◽  
2020 ◽  
Vol 369 (6508) ◽  
pp. 1161-1162
Author(s):  
Joanna Carey
Keyword(s):  
2021 ◽  
Author(s):  
Christoph Rosinger ◽  
Michael Bonkowski

AbstractFreeze–thaw (FT) events exert a great physiological stress on the soil microbial community and thus significantly impact soil biogeochemical processes. Studies often show ambiguous and contradicting results, because a multitude of environmental factors affect biogeochemical responses to FT. Thus, a better understanding of the factors driving and regulating microbial responses to FT events is required. Soil chronosequences allow more focused comparisons among soils with initially similar start conditions. We therefore exposed four soils with contrasting organic carbon contents and opposing soil age (i.e., years after restoration) from a postmining agricultural chronosequence to three consecutive FT events and evaluated soil biochgeoemical responses after thawing. The major microbial biomass carbon losses occurred after the first FT event, while microbial biomass N decreased more steadily with subsequent FT cycles. This led to an immediate and lasting decoupling of microbial biomass carbon:nitrogen stoichiometry. After the first FT event, basal respiration and the metabolic quotient (i.e., respiration per microbial biomass unit) were above pre-freezing values and thereafter decreased with subsequent FT cycles, demonstrating initially high dissimilatory carbon losses and less and less microbial metabolic activity with each iterative FT cycle. As a consequence, dissolved organic carbon and total dissolved nitrogen increased in soil solution after the first FT event, while a substantial part of the liberated nitrogen was likely lost through gaseous emissions. Overall, high-carbon soils were more vulnerable to microbial biomass losses than low-carbon soils. Surprisingly, soil age explained more variation in soil chemical and microbial responses than soil organic carbon content. Further studies are needed to dissect the factors associated with soil age and its influence on soil biochemical responses to FT events.


Soil Science ◽  
1993 ◽  
Vol 155 (1) ◽  
pp. 53-60 ◽  
Author(s):  
SADAO SHOJI ◽  
MASAMI NANZYO ◽  
YASUHITO SHIRATO ◽  
TOYOAKI ITO

Geoderma ◽  
1994 ◽  
Vol 61 (3-4) ◽  
pp. 165-189 ◽  
Author(s):  
J.A. Mason ◽  
C.J. Milfred ◽  
E.A. Nater

2018 ◽  
Vol 15 (1) ◽  
pp. 279-295 ◽  
Author(s):  
Corina Buendía ◽  
Axel Kleidon ◽  
Stefano Manzoni ◽  
Björn Reu ◽  
Amilcare Porporato

Abstract. Phosphorus (P) availability decreases with soil age and potentially limits the productivity of ecosystems growing on old and weathered soils. Despite growing on ancient soils, ecosystems of lowland Amazonia are highly productive and are among the most biodiverse on Earth. P eroded and weathered in the Andes is transported by the rivers and deposited in floodplains of the lowland Amazon basin creating hotspots of P fertility. We hypothesize that animals feeding on vegetation and detritus in these hotspots may redistribute P to P-depleted areas, thus contributing to dissipate the P gradient across the landscape. Using a mathematical model, we show that animal-driven spatial redistribution of P from rivers to land and from seasonally flooded to terra firme (upland) ecosystems may sustain the P cycle of Amazonian lowlands. Our results show how P imported to land by terrestrial piscivores in combination with spatial redistribution of herbivores and detritivores can significantly enhance the P content in terra firme ecosystems, thereby highlighting the importance of food webs for the biogeochemical cycling of Amazonia.


2020 ◽  
Author(s):  
Devin R. Leopold ◽  
Kabir G. Peay ◽  
Peter M. Vitousek ◽  
Tadashi Fukami

AbstractEricaceous plants rely on ericoid mycorrhizal fungi for nutrient acquisition. However, the factors that affect the composition and structure of these fungal communities remain largely unknown. Here, we use a 4.1-myr soil chronosequence in Hawaii to test the hypothesis that changes in nutrient availability with soil age determine the diversity and species composition of fungi associated with ericoid roots. We sampled roots of a native Hawaiian plant, Vaccinium calycinum, and used DNA metabarcoding to quantify changes in fungal diversity and species composition. We also used a fertilization experiment at the youngest and oldest sites to assess the importance of nutrient limitation. We found an increase in diversity and a clear pattern of species turnover across the chronosequence, driven largely by putative ericoid mycorrhizal fungi. Fertilization with nitrogen at the youngest site and phosphorus at the oldest site reduced total fungal diversity, suggesting a direct role of nutrient limitation. Our results also reveal the presence of novel fungal species associated with Hawaiian Ericaceae and suggest a greater importance of phosphorus availability for communities of ericoid mycorrhizal fungi than is generally assumed.


1993 ◽  
Vol 39 (2) ◽  
pp. 186-200 ◽  
Author(s):  
Terry W. Swanson ◽  
Deborah L. Elliott-Fisk ◽  
Randel J. Southard

AbstractDetailed mapping and provisional numerical age determinations of glacial deposits in the South Chiatovich Creek Basin of the White Mountains provide an opportunity to evaluate the ability of conventional soil parameters to discriminate first- and second-order glacial events. Sampling and analytical procedures were designed to minimize variation in climate and lithology. When lithology and climate are similar among sites, age trends are more pronounced in both field and chemical soil properties. Profile development indices (PDIs), adjusted by removing melanization and pH, systematically increase with greater soil age, and discriminate first-order, but not second-order, glacial events. The best-fit curve for adjusted PDI data assumes an exponential form and suggests that the rate of soil formation in this region decreases over time, similar to the rate of weathering-rind development. Variation in eolian influx and surface erosion, which are dominant processes affecting soils of the basin, cause major uncertainties in establishing soil age and, hence, soil-development rates. Even on the youngest glacial deposits, soil age is probably significantly less than deposit age due to these geomorphic processes. Soil and weathering parameters imply that these field techniques can be inexpensively employed to define relative chronologies and to assess surface degradation and its impact on surface exposure ages. Results from this study indicate that site-selection strategy for establishing glacial chronologies should be reevaluated. Working with stable residual bedrock surfaces and associated low-relief outwash fans and terraces may prove more productive than focusing on relatively unstable moraine surfaces in tectonically active mountain systems.


2008 ◽  
Vol 23 (2) ◽  
pp. 95-103 ◽  
Author(s):  
H LAMBERS ◽  
J RAVEN ◽  
G SHAVER ◽  
S SMITH

2019 ◽  
Vol 65 (3) ◽  
pp. 515-528 ◽  
Author(s):  
Zhouling Zhang ◽  
Xiaole Sun ◽  
Minhan Dai ◽  
Zhimian Cao ◽  
Guillaume Fontorbe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document