CO2 electrolysis to multicarbon products in strong acid

Science ◽  
2021 ◽  
Vol 372 (6546) ◽  
pp. 1074-1078
Author(s):  
Jianan Erick Huang ◽  
Fengwang Li ◽  
Adnan Ozden ◽  
Armin Sedighian Rasouli ◽  
F. Pelayo García de Arquer ◽  
...  

Carbon dioxide electroreduction (CO2R) is being actively studied as a promising route to convert carbon emissions to valuable chemicals and fuels. However, the fraction of input CO2 that is productively reduced has typically been very low, <2% for multicarbon products; the balance reacts with hydroxide to form carbonate in both alkaline and neutral reactors. Acidic electrolytes would overcome this limitation, but hydrogen evolution has hitherto dominated under those conditions. We report that concentrating potassium cations in the vicinity of electrochemically active sites accelerates CO2 activation to enable efficient CO2R in acid. We achieve CO2R on copper at pH <1 with a single-pass CO2 utilization of 77%, including a conversion efficiency of 50% toward multicarbon products (ethylene, ethanol, and 1-propanol) at a current density of 1.2 amperes per square centimeter and a full-cell voltage of 4.2 volts.

2018 ◽  
Vol 47 (45) ◽  
pp. 16305-16312 ◽  
Author(s):  
Xiaoqiang Du ◽  
Hui Su ◽  
Xiaoshuang Zhang

Using Co3O4@Co3S4-24 h as a bifunctional water splitting catalyst, an overpotential of ∼300 mV is obtained at a very low cell voltage of 1.53 V with a current density of 10 mA cm−2 in 1.0 M KOH.


2021 ◽  
Author(s):  
Minmin Wang ◽  
Mengke Zhang ◽  
Wenwu Song ◽  
Weiting Zhong ◽  
Xunyue Wang ◽  
...  

A CoMo2S4/Ni3S2 heterojunction is prepared with an overpotential of only 51 mV to drive a current density of 10 mA cm−2 in 1 M KOH solution and ∼100% of the potential remains in the ∼50 h chronopotentiometric curve at 10 mA cm−2.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 662 ◽  
Author(s):  
Guangsheng Liu ◽  
Kunyapat Thummavichai ◽  
Xuefeng Lv ◽  
Wenting Chen ◽  
Tingjun Lin ◽  
...  

Molybdenum disulfide (MoS2) has been universally demonstrated to be an effective electrocatalytic catalyst for hydrogen evolution reaction (HER). However, the low conductivity, few active sites and poor stability of MoS2-based electrocatalysts hinder its hydrogen evolution performance in a wide pH range. The introduction of other metal phases and carbon materials can create rich interfaces and defects to enhance the activity and stability of the catalyst. Herein, a new defect-rich heterogeneous ternary nanocomposite consisted of MoS2, NiS and reduced graphene oxide (rGO) are synthesized using ultrathin αNi(OH)2 nanowires as the nickel source. The MoS2/rGO/NiS-5 of optimal formulation in 0.5 M H2SO4, 1.0 M KOH and 1.0 M PBS only requires 152, 169 and 209 mV of overpotential to achieve a current density of 10 mA cm−2 (denoted as η10), respectively. The excellent HER performance of the MoS2/rGO/NiS-5 electrocatalyst can be ascribed to the synergistic effect of abundant heterogeneous interfaces in MoS2/rGO/NiS, expanded interlayer spacings, and the addition of high conductivity graphene oxide. The method reported here can provide a new idea for catalyst with Ni-Mo heterojunction, pH-universal and inexpensive hydrogen evolution reaction electrocatalyst.


2020 ◽  
Vol 56 (56) ◽  
pp. 7702-7705 ◽  
Author(s):  
Lei Guo ◽  
Xue Bai ◽  
Hui Xue ◽  
Jing Sun ◽  
Tianshan Song ◽  
...  

A 3D hierarchical Bi-doped CoP nanoflowers electrocatalyst is developed based on a MOF self-sacrifice strategy. The 3% Bi/CoP catalyst delivers a current density of 10 mA cm−2 at low overpotentials of 122 mV in alkaline electrolyte and 150 mV in acidic electrolyte.


2017 ◽  
Vol 5 (16) ◽  
pp. 7564-7570 ◽  
Author(s):  
Peili Zhang ◽  
Hong Chen ◽  
Mei Wang ◽  
Yong Yang ◽  
Jian Jiang ◽  
...  

A hierarchically structured Ni–Co–P film exhibits remarkable activity toward the hydrogen evolution reaction with a current density of −10 mA cm−2 at −30 mV vs. the RHE.


RSC Advances ◽  
2015 ◽  
Vol 5 (21) ◽  
pp. 16405-16413 ◽  
Author(s):  
Petter Tammela ◽  
Zhaohui Wang ◽  
Sara Frykstrand ◽  
Peng Zhang ◽  
Ida-Maria Sintorn ◽  
...  

Asymmetric, all-organic supercapacitors (containing an aqueous electrolyte), exhibiting a capacitance of 25 F g−1 (or 2.3 F cm−2) at a current density of 20 mA cm−2 and a maximum cell voltage of 1.6 V, are presented.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2347
Author(s):  
Zhi Chen ◽  
Ying Zhao ◽  
Yuxiao Gao ◽  
Zexing Wu ◽  
Lei Wang

Exploiting efficient electrocatalysts for hydrogen evolution reactions (HERs) is important for boosting the large-scale applications of hydrogen energy. Herein, MoP-RuP2 encapsulated in N,P-codoped carbon (MoP-RuP2@NPC) with abundant interfaces were prepared via a facile avenue with the low-toxic melamine phosphate as the phosphorous resource. Moreover, the obtained electrocatalyst possessed a porous nanostructure, had abundant exposed active sites and improved the mass transport during the electrocatalytic process. Due to the above merits, the prepared MoP-RuP2@NPC delivered a greater electrocatalytic performance for HERs (50 mV@10 mA cm−2) relative to RuP2@NPC (120 mV) and MoP@NPC (195 mV) in 1 M KOH. Moreover, an ultralow potential of 1.6 V was required to deliver a current density of 10 mA cm−2 in the two-electrode configuration for overall water splitting. For practical applications, intermittent solar energy, wind energy and thermal energy were utilized to drive the electrolyzer to generate hydrogen gas. This work provides a novel and facile strategy for designing highly efficient and stable nanomaterials toward hydrogen production.


2020 ◽  
Vol 4 (1) ◽  
pp. 312-323 ◽  
Author(s):  
Harsharaj S. Jadhav ◽  
Animesh Roy ◽  
Bezawit Z. Desalegan ◽  
Jeong Gil Seo

A room-temperature synthesized NiFeCe2 electrocatalyst delivered a current density of 10 mA cm−2 at a cell voltage of 1.59 V when used as the electrolyzer.


2019 ◽  
Vol 3 (10) ◽  
pp. 2771-2778 ◽  
Author(s):  
Shancheng Yan ◽  
Ka Wang ◽  
Qingxia Wu ◽  
Fei Zhou ◽  
Zixia Lin ◽  
...  

The ultrafine Co:ZnS/CoS2 heterostructure nanowires with high hydrogen evolution performance by one-step hydrothermal method. The overpotential required to reach a current density of 10 mAcm−2 was only 78 mV in 0.5 M H2SO4 solution, and the Tafel slope was 56 mV dec−1.


2010 ◽  
Vol 72 ◽  
pp. 135-143 ◽  
Author(s):  
Günter Schiller ◽  
Asif Ansar ◽  
Olaf Patz

Metal supported cells as developed at DLR for use as solid oxide fuel cells by applying plasma deposition technologies were investigated in operation of high temperature steam electrolysis. The cells consisted of a porous ferritic steel support, a diffusion barrier layer, a Ni/YSZ fuel electrode, a YSZ electrolyte and a LSCF oxygen electrode. During fuel cell and electrolysis operation the cells were electrochemically characterised by means of i-V characteristics and electrochemical impedance spectroscopy measurements including a long-term test over 2000 hours. The results of electrochemical performance and long-term durability tests of both single cells and single repeating units (cell including metallic interconnect) are reported. During electrolysis operation at an operating temperature of 850 °C a cell voltage of 1.28 V was achieved at a current density of -1.0 A cm-2; at 800 °C the cell voltage was 1.40 V at the same operating conditions. The impedance spectra revealed a significantly enhanced polarisation resistance during electrolysis operation compared to fuel cell operation which was mainly attributed to the hydrogen electrode. During a long-term test run of a single cell over 2000 hours a degradation rate of 3.2% per 1000 hours was observed for operation with steam content of 43% at 800 °C and a current density of -0.3 Acm-2. Testing of a single repeating unit proved that a good contacting of cell and metallic interconnect is of major importance to achieve good performance. A test run over nearly 1000 hours showed a remarkably low degradation rate.


Sign in / Sign up

Export Citation Format

Share Document