FDA's green light, science's red light

Science ◽  
2021 ◽  
Vol 372 (6549) ◽  
pp. 1371-1371
Author(s):  
Joel S. Perlmutter
Keyword(s):  
Jurnal MIPA ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 200
Author(s):  
Tjerie Pangemanan ◽  
Arnold Rondonuwu

Masalah lalu lintas  merupakan salah satu  masalah yang sangat sulit diatasi dengan hanya menggunakan system waktu (timer). Oleh sebab itu diperlukan suatu system pengaturan otomatis yang bersifat real-time sehingga waktu pengaturan lampu lalu lintas dapat disesuaikan dnegan keadaan di lapangan. Penelitian ini bertujuan mengembangkan suatu simulasi sistem yang mampu mengestimasi panjang antrian kendaraan menggunakan metoda pengolahan citra digital hanya dengan menggunakan satu kamera untuk dijadikan parameter masukan  dalam menghitung lama waktu nyala lampu merah dan lampu hijau. Oleh karena itu, sistem lalulintas sangatlah diperlukan, sebagai sarana dan prasarana untuk menjadikan lalulintas lancar, aman, bahkan sebagai media pembelajaran disiplin bagi masyarakat pengguna jalan raya. Penelitian ini penulis menggunakan sistem pengontrolan berbasis citra digital dimana camera sebagai sensor. Untuk aplikasi dari  semua metode dalam penelitian ini digunakan Microcontroller AurdinoTraffic problems is one of the problems that is very difficult to overcome by only using the system time (timer). Therefore we need an automatic real-time adjustment system so that the time settings for traffic lights can be adjusted according to the conditions on the ground. This study aims to develop a system simulation that is able to estimate the length of the vehicle queue using a digital image processing method using only one camera to be used as input parameters in calculating the length of time the red light and green light. Therefore, the traffic system is very necessary, as a means and infrastructure to make traffic smooth, safe, even as a medium for disciplined learning for road users. In this study the authors used a digital image-based control system where the camera as a sensor. For the application of all methods in this study, Aurdino Microcontroller is used


2021 ◽  
Vol 11 (6) ◽  
pp. 2735
Author(s):  
Ernesto Olvera-Gonzalez ◽  
Martín Montes Rivera ◽  
Nivia Escalante-Garcia ◽  
Eduardo Flores-Gallegos

Artificial lighting is a key factor in Closed Production Plant Systems (CPPS). A significant light-emitting diode (LED) technology attribute is the emission of different wavelengths, called light recipes. Light recipes are typically configured in continuous mode, but can also be configured in pulsed mode to save energy. We propose two nonlinear models, i.e., genetic programing (GP) and feedforward artificial neural networks (FNNs) to predict energy consumption in CPPS. The generated models use the following input variables: intensity, red light component, blue light component, green light component, and white light component; and the following operation modes: continuous and pulsed light including pulsed frequency, and duty cycle as well energy consumption as output. A Spearman's correlation was applied to generate a model with only representative inputs. Two datasets were applied. The first (Test 1), with 5700 samples with similar input ranges, was used to train and evaluate, while the second (Test 2), included 160 total datapoints in different input ranges. The metrics that allowed a quantitative evaluation of the model's performance were MAPE, MSE, MAE, and SEE. Our implemented models achieved an accuracy of 96.1% for the GP model and 98.99% for the FNNs model. The models used in this proposal can be applied or programmed as part of the monitoring system for CPPS which prioritize energy efficiency. The nonlinear models provide a further analysis for energy savings due to the light recipe and operation light mode, i.e., pulsed and continuous on artificial LED lighting systems.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Dwi Ariyanti ◽  
Kazunori Ikebukuro ◽  
Koji Sode

Abstract Background The development of multiple gene expression systems, especially those based on the physical signals, such as multiple color light irradiations, is challenging. Complementary chromatic acclimation (CCA), a photoreversible process that facilitates the control of cellular expression using light of different wavelengths in cyanobacteria, is one example. In this study, an artificial CCA systems, inspired by type III CCA light-regulated gene expression, was designed by employing a single photosensor system, the CcaS/CcaR green light gene expression system derived from Synechocystis sp. PCC6803, combined with G-box (the regulator recognized by activated CcaR), the cognate cpcG2 promoter, and the constitutively transcribed promoter, the PtrcΔLacO promoter. Results One G-box was inserted upstream of the cpcG2 promoter and a reporter gene, the rfp gene (green light-induced gene expression), and the other G-box was inserted between the PtrcΔLacO promoter and a reporter gene, the bfp gene (red light-induced gene expression). The Escherichia coli transformants with plasmid-encoded genes were evaluated at the transcriptional and translational levels under red or green light illumination. Under green light illumination, the transcription and translation of the rfp gene were observed, whereas the expression of the bfp gene was repressed. Under red light illumination, the transcription and translation of the bfp gene were observed, whereas the expression of the rfp gene was repressed. During the red and green light exposure cycles at every 6 h, BFP expression increased under red light exposure while RFP expression was repressed, and RFP expression increased under green light exposure while BFP expression was repressed. Conclusion An artificial CCA system was developed to realize a multiple gene expression system, which was regulated by two colors, red and green lights, using a single photosensor system, the CcaS/CcaR system derived from Synechocystis sp. PCC6803, in E. coli. The artificial CCA system functioned repeatedly during red and green light exposure cycles. These results demonstrate the potential application of this CCA gene expression system for the production of multiple metabolites in a variety of microorganisms, such as cyanobacteria.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 1341.2-1341
Author(s):  
B. Hernández-Cruz ◽  
F. J. Olmo Montes ◽  
M. J. Miranda García ◽  
M. D. Jimenez Moreno ◽  
M. A. Vázquez Gómez ◽  
...  

Background:The Virgen Macarena University Hospital belongs to the Public Health System of Andalusia and serves 481,296 inhabitants in Seville, Spain. In 2018 the Fracture Liaison Service switched to a multidisciplinary unit.Objectives:To describe FLS, to know the characteristics of patients with emphasis on gender differences and to know the completion of International Osteoporosis Foundation quality standards.Methods:Prospective, observational, analytical, research of usual clinical practice. All the consecutive patients attended from May 2018 to October 2019, ≥50 years, with a fragility fracture (occurred in the previous 24 months) were included. The study was approved by the Ethics Committee, Code 1084-N-16.Results:Our FLS is a type A multidisciplinary Unit, with a high level of intervention in the evaluation, estimation of fracture risk and fall risk, treatment prescription and follow-up of the patients. We included 408 patients, 80% females, one third with ≥80 years. Fragility fractures recorded in 328 women were hip (132, 40%), clinical vertebral (81, 25%) and no hip no vertebral (115, 35%). Those recorded in 82 males were hip (53, 66%), clinical vertebral (20, 24%) and no hip no vertebral (9, 10%), p=0.0001. Males had a higher rate of secondary causes of OP, drinker, and smoking. The most relevant gender difference was the low percentage of patients receiving pre-FF OP treatment. Forty-nine (16%) women versus 9 (7%) males had received it at some point in their life, p=0.04. Two hundred and seventy-one (86%) women vs 48 males (63%) had received it at after their FF in their reference unit, and all them were treated after the FLS evaluation. The probability of a male not receiving prior treatment was 2.5 (95% CI 1.01- 6.51); p=0,04. This probability was 0.64 (0.38-1.09) after the FF. After twelve months of follow-up in FLs, 96% continued treatment, with no differences between men and women. The completion of IOF quality standards was bad (red light) for patient identification items and FLS reference time. It was poor (amber traffic light) for initial OP screening standard and was good (green light) for the remaining 10 indicators. The completion of IOF quality standards was bad (red light) for patient identification items and FLS reference time. It was poor (amber traffic light) for initial OP screening standard and was good (green light) for the remaining 10 indicators (Figure 1).Figure 1.Figure 1.Conclusion:The FLS is a multidisciplinary type A. Its operation has narrowed the gap in diagnosis, treatment, and follow-up of FF patients, especially males. It is essential to improve patient recruitment, reduce referral times and increase the overall assessment of the patients.References:[1]Ganda K. et al. Models of care for the secondary prevention of osteoporotic fractures: a systematic review and meta-analysis, Osteoporos Int 2013;24:293-406.[2]Javaid MK et al. A patient-level key performance indicator set to measure the effectiveness of fracture liaison services and guide quality improvement: a position paper of the IOF Capture the Fracture Working Group, National Osteoporosis Foundation and Fragility Fracture Network. Osteoporos Int. 2020 Jul;31(7):1193-1204.Acknowledgements:Spanish Society of Research in Mineral and Bone Metabolism for its support through the competitive project FLS Excellence 2018 to obtain a training grant from the case management nurse.Disclosure of Interests:Blanca Hernández-Cruz Speakers bureau: Sociedad Española de Reumatología, Abbvie, Roche, Bristol, MSD, Lilly, Pfizer, Amgen, Sanofi, Consultant of: Abbvie, Lilly, Sanofi, STADA, UCB, Amgen, Galapagos., Grant/research support from: Fundación para la Investigación Sevilla, Junta de AndalucíaFundación Andaluza de Reumatología, Sociuedad Española de Reumatología., Francisco Jesús Olmo Montes: None declared., Maria José Miranda García: None declared., María Dolores Jimenez Moreno: None declared., María Angeles Vázquez Gómez: None declared., Mercedes Giner García: None declared., Miguel Angel Colmenero Camacho: None declared., José Javier Pérez Venegas: None declared., María José Montoya García: None declared.


2008 ◽  
Vol 190 (21) ◽  
pp. 7241-7250 ◽  
Author(s):  
Lina Li ◽  
David M. Kehoe

ABSTRACT RcaC is a large, complex response regulator that controls transcriptional responses to changes in ambient light color in the cyanobacterium Fremyella diplosiphon. The regulation of RcaC activity has been shown previously to require aspartate 51 and histidine 316, which appear to be phosphorylation sites that control the DNA binding activity of RcaC. All available data suggest that during growth in red light, RcaC is phosphorylated and has relatively high DNA binding activity, while during growth in green light RcaC is not phosphorylated and has less DNA binding activity. RcaC has also been found to be approximately sixfold more abundant in red light than in green light. Here we demonstrate that the light-controlled abundance changes of RcaC are necessary, but not sufficient, to direct normal light color responses. RcaC abundance changes are regulated at both the RNA and protein levels. The RcaC protein is significantly less stable in green light than in red light, suggesting that the abundance of this response regulator is controlled at least in part by light color-dependent proteolysis. We provide evidence that the regulation of RcaC abundance does not depend on any RcaC-controlled process but rather depends on the presence of the aspartate 51 and histidine 316 residues that have previously been shown to control the activity of this protein. We propose that the combination of RcaC abundance changes and modification of RcaC by phosphorylation may be necessary to provide the dynamic range required for transcriptional control of RcaC-regulated genes.


2002 ◽  
Vol 13 (4) ◽  
pp. 355-369 ◽  
Author(s):  
Jane E. Dutton ◽  
Susan J. Ashford ◽  
Katherine A. Lawrence ◽  
Kathi Miner-Rubino

2021 ◽  
Vol 12 ◽  
Author(s):  
Jun Liu ◽  
Marc W. van Iersel

Red and blue light are traditionally believed to have a higher quantum yield of CO2 assimilation (QY, moles of CO2 assimilated per mole of photons) than green light, because green light is absorbed less efficiently. However, because of its lower absorptance, green light can penetrate deeper and excite chlorophyll deeper in leaves. We hypothesized that, at high photosynthetic photon flux density (PPFD), green light may achieve higher QY and net CO2 assimilation rate (An) than red or blue light, because of its more uniform absorption throughtout leaves. To test the interactive effects of PPFD and light spectrum on photosynthesis, we measured leaf An of “Green Tower” lettuce (Lactuca sativa) under red, blue, and green light, and combinations of those at PPFDs from 30 to 1,300 μmol⋅m–2⋅s–1. The electron transport rates (J) and the maximum Rubisco carboxylation rate (Vc,max) at low (200 μmol⋅m–2⋅s–1) and high PPFD (1,000 μmol⋅m–2⋅s–1) were estimated from photosynthetic CO2 response curves. Both QYm,inc (maximum QY on incident PPFD basis) and J at low PPFD were higher under red light than under blue and green light. Factoring in light absorption, QYm,abs (the maximum QY on absorbed PPFD basis) under green and red light were both higher than under blue light, indicating that the low QYm,inc under green light was due to lower absorptance, while absorbed blue photons were used inherently least efficiently. At high PPFD, the QYinc [gross CO2 assimilation (Ag)/incident PPFD] and J under red and green light were similar, and higher than under blue light, confirming our hypothesis. Vc,max may not limit photosynthesis at a PPFD of 200 μmol m–2 s–1 and was largely unaffected by light spectrum at 1,000 μmol⋅m–2⋅s–1. Ag and J under different spectra were positively correlated, suggesting that the interactive effect between light spectrum and PPFD on photosynthesis was due to effects on J. No interaction between the three colors of light was detected. In summary, at low PPFD, green light had the lowest photosynthetic efficiency because of its low absorptance. Contrary, at high PPFD, QYinc under green light was among the highest, likely resulting from more uniform distribution of green light in leaves.


1992 ◽  
Vol 8 (3) ◽  
pp. 243-249 ◽  
Author(s):  
Joseph C. Besharse ◽  
Paul Witkovsky

AbstractTo test the hypothesis that light-evoked cone contraction in eye cups from Xenopus laevis is controlled through a direct mechanism initiated by the cone's own photopigment, we conducted spectral-sensitivity experiments. We estimate that initiation of contraction of red absorbing cones (611 nm) is 1.5 log units more sensitive to green (533 nm) than red (650 nm) light stimuli. The difference is comparable to that predicted from the spectral-sensitivity function of the green absorbing, principal rod (523 nm). Furthermore, 480-nm and 580-nm stimuli which are absorbed nearly equally by the principal rod have indistinguishable effects on cone contraction. We also found that light blockade of nighttime cone elongation is much more sensitive to green than to red light stimuli. Our observations are inconsistent with the hypothesis tested, and suggest that light-regulated cone motility is controlled through an indirect mechanism initiated primarily by the green absorbing, principal rod.


1991 ◽  
Vol 69 (7) ◽  
pp. 1963-1968 ◽  
Author(s):  
Richard B. King ◽  
Bethia King

An observer-free method of color classification was used to determine whether wood frogs, Rana sylvatica, exhibit sexual differences in color and color change. Males and females captured from breeding aggregations differed significantly in color: females reflected a greater amount of long-wavelength (yellow–red) light and less short-wavelength (blue–green) light than males. The color difference was not just a result of differences in the state of physiological color change at the time of capture but persisted for a month after capture. Males and females also differed in their color-change responses to black and white backgrounds: both sexes changed in brightness, but only males changed in the relative amount of light reflected at different wavelengths. Wood frog color may function in predator avoidance through crypsis. There was a good match between frogs and some of the leaves from the leaf litter surrounding the breeding ponds. Hypotheses for the development of sexual differences in wood frog color include sexual differences in availability of pigment and pigment precursors, morphological color change, and evolutionary response to different selection pressures.


Sign in / Sign up

Export Citation Format

Share Document