Perancangan Sistem Kontrol Lampu Lalulintas Cerdas Dengan Menggunakan Mikrokontroler dan Kamera

Jurnal MIPA ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 200
Author(s):  
Tjerie Pangemanan ◽  
Arnold Rondonuwu

Masalah lalu lintas  merupakan salah satu  masalah yang sangat sulit diatasi dengan hanya menggunakan system waktu (timer). Oleh sebab itu diperlukan suatu system pengaturan otomatis yang bersifat real-time sehingga waktu pengaturan lampu lalu lintas dapat disesuaikan dnegan keadaan di lapangan. Penelitian ini bertujuan mengembangkan suatu simulasi sistem yang mampu mengestimasi panjang antrian kendaraan menggunakan metoda pengolahan citra digital hanya dengan menggunakan satu kamera untuk dijadikan parameter masukan  dalam menghitung lama waktu nyala lampu merah dan lampu hijau. Oleh karena itu, sistem lalulintas sangatlah diperlukan, sebagai sarana dan prasarana untuk menjadikan lalulintas lancar, aman, bahkan sebagai media pembelajaran disiplin bagi masyarakat pengguna jalan raya. Penelitian ini penulis menggunakan sistem pengontrolan berbasis citra digital dimana camera sebagai sensor. Untuk aplikasi dari  semua metode dalam penelitian ini digunakan Microcontroller AurdinoTraffic problems is one of the problems that is very difficult to overcome by only using the system time (timer). Therefore we need an automatic real-time adjustment system so that the time settings for traffic lights can be adjusted according to the conditions on the ground. This study aims to develop a system simulation that is able to estimate the length of the vehicle queue using a digital image processing method using only one camera to be used as input parameters in calculating the length of time the red light and green light. Therefore, the traffic system is very necessary, as a means and infrastructure to make traffic smooth, safe, even as a medium for disciplined learning for road users. In this study the authors used a digital image-based control system where the camera as a sensor. For the application of all methods in this study, Aurdino Microcontroller is used

KS Tubun Street is a street in Bogor, which has a fairly high vehicle volume and become one of a high-traffic jam area. This is caused by KS Tubun Street is the main road for road users from Jakarta and Bogor. Traffic jam problem that occurs due to the confluence interchange of traffic flow and traffic lights settings that are not proportional to the volume of vehicles across the road. Optimization of traffic flow at KS Tubun Street performed by the stages of forming a model of traffic flow, determining the density and velocity of the vehicle is based on the Greenberg model, and determining the length of the traffic lights to avoid a buildup of vehicles. The result is a traffic flow model with distance and time parameters. The density of vehicles that occurs on the streets of KS. Tubun street based on the Greenberg model between 180 to 240 unit car of passanger (ucp) with the average velocity of vehicles 15 to 19.5 km per hour. The density of vehicles on KS. Tubun street can be break down by increasing time. Traffic light cycle time can be reduced for 8 seconds with the red light glowing time is 80 seconds and the green light glowing time is 62 seconds.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Gerardo Hernandez-Oregon ◽  
Mario E. Rivero-Angeles ◽  
Juan C. Chimal-Eguía ◽  
Arturo Campos-Fentanes ◽  
Jorge G. Jimenez-Gallardo ◽  
...  

Vehicular networks is a key technology for efficiently communicating both user’s devices and cars for timely information regarding safe driving conditions and entertaining applications like social media, video streaming, and gaming services, among others. In view of this, mobile communications making use of cellular resources may not be an efficient and cost-effective alternative. In this context, the implementation of light-fidelity (LiFi) in vehicular communications could be a low-cost, high-data-rate, and efficient-bandwidth usage solution. In this work, we propose a mathematical analysis to study the average throughput in a road intersection equipped with a traffic light that operates as a server, which is assumed to have LiFi communication links with the front lights of the vehicles waiting for the green light. We further assume that the front vehicle (the car next to the traffic light) is able to communicate to the car immediately behind it by using its own tail lights and the front lights of such vehicle, and so on and so forth. The behavior of the road junction is modeled by a Markov chain, applying the Queueing theory with an M/M/1 system in order to obtain the average queue length. Then, Little’s theorem is applied to calculate the average waiting delay when the red light is present in the traffic light. Finally, the mathematical expression of the data throughput is derived.


2019 ◽  
Vol 8 (4) ◽  
pp. 5539-5542

The automobile industries are concentrating to develop the design for self-driving cars. Nowadays they are many possibilities to implement the automated vehicle, but the drawbacks for implementing are also very high. In this paper, the miniature model of self-driving robot is created and demonstrated using the Raspberry pi with supporting sensors and motor drivers. So, this was mainly because of the security concerns that have raised in the initial testing stages. So, this paper could best describe an application that deals with the safety measures of the autonomous vehicles that are going to be dealt with in the nearer future. This paper tells us about how an application can be implemented using Raspberry Pi, camera module and the ultrasonic Sensor. Considering the different features and the cost, on a small scale a two-wheel vehicular robotic prototype has been designed. In the Autonomous car Raspberry pi is the central processor. Different type of images are captured by the camera module, and if these images have captured the color of traffic lights, then if the captured image is of the Red light then the motors of the vehicle should stop such that breaks of the car in real world should work. If the captured image is of Green light then the motors of the car should run and the vehicle should start to move in the direction it want to move and also using the Ultrasonic sensor if any of the objects that are nearby to the vehicle, then the vehicle should change the direction from which it is moving and this is well described throughout the paper.


We have proposed the enhancement of Traffic Light Controller utilizing ultrasonic sensor and microcontroller. The Paper is planned for structuring a thickness based dynamic traffic signal framework where the planning of signal will change consequently on detecting the traffic density at any road junction. Traffic jams are an extreme issue in many urban areas over the world and thusly the time has come to move progressively manual mode or fixed clock mode to a robotized framework with choice making abilities. Present day traffic control framework is fixed time based which may render wasteful on the off chance that one path is operational than the others. To solve this issue, we have made a structure for a clever traffic control system. Some of the time higher traffic density at one side of the intersection requires longer green light time when compared with standard green light time. We, consequently propose here a component where the time of green light and red light is allotted based on the thickness of the traffic present around then. This is accomplished by utilizing ultrasonic sensors which are available on Top of the street.Sometime, in specific intersection of the street junctions extended periods of Red Traffic Light. In instance of any vehicle in crisis circumstance or on the other hand in emergency like VVIPs,a SMS is send to Traffic Control Authority, who has the control of microcontroller empowers microcontroller to change traffic light green for specific time on need premise.


2021 ◽  
pp. 002252662098779
Author(s):  
Martin Emanuel

This article probes the duality of marginalisation yet omnipresence of walking in cities. Using innovation in traffic light technology in Stockholm as a case study, it seeks to understand the attempts to regulate and safeguard pedestrians in the first decade after the Second World War. The article argues that traffic lights and other technologies were part of experts’ efforts to make urban mobility “systemic”, linking streets with vehicles and road users with the aim to optimize traffic. In doing so, their approach to pedestrian control was ambiguous. On the one hand, experts wanted to fit pedestrians into the emerging city traffic system: make them predictable, while also seeing to their safety. On the other hand, their designs and corresponding legislation often accepted pedestrian sovereignty, and walking was not systemised in Stockholm during the period studied here.


Author(s):  
L Srinivas ◽  
J Bhavan ◽  
K Janakiram ◽  
M Rupasri ◽  
A B Chandrika

Nowadays, controlling the traffic becomes major issue because of rapid increase in automobiles and also because of large time delays between traffic lights.to optimise this problem we have made a frame work for an intelligent traffic control system. Sometimes higher traffic density at one side of the junction demands longer green time as compared to standard allotment time we, therefore propose here a mechanism in which the time period of green light and red light is assigned on the basis of the density of the traffic present at that time . Once the density is calculated ,the glowing time of a green light is assigned by the help of microcontroller(Arduino). The sensors which are present on sides of the roads will detect the presence of the vehicles and sends the information to the microcontroller where it will decide how long a flank will be open or when to change over the signal light. This project explains you how to control the traffic based on density. In this system, we will use IR sensors to measure the traffic density. We have to arrange one IR sensor for each road, these sensors always sense the traffic on that particular road .All these sensors are interfaced to the microcontroller .Based on these sensors, controller detects the traffic and controls the traffic system.


2018 ◽  
Vol 215 ◽  
pp. 01009
Author(s):  
Alfith Alfith ◽  
Kartiria Kartiria

The main function of the highway are used as a means to facilitate transportation, but today is often challenging due to all road users wanting more quickly reach its destination and precede each other. On the other hand, there is also a special car or entourage effect on traffic density, which in turn impact on congestion. To cope with this is actually the duty of the Traffic Police is not every day got in the way to manage traffic and will not be able to count the number of passing vehicles. To direct the traffic at any place such as a T-junction, an intersection, or intersection five solid pace of the traffic, the necessary traffic arrangements multifunctional tool called Smart Traffic Light. Called smart because the traffic light is deemed able to overcome three problems, such detect traffic density which affects the green light sensor uses the object infrared, able to detect the presence of specific signal from cars special like ambulance or fire engine or police or the like are automatically will change traffic lights red to green light using the XBee wireless module Pro and GPS, and seeks the traffic lights stay lit even though the supply of PLN extinguished using a spare battery. The system is capable of regulating the rate of traffic by arranging alternately road vehicle that passes a certain spot every day for nearly 24 hours a day and on these tools need to pair every day.


2021 ◽  
Vol 11 (6) ◽  
pp. 2735
Author(s):  
Ernesto Olvera-Gonzalez ◽  
Martín Montes Rivera ◽  
Nivia Escalante-Garcia ◽  
Eduardo Flores-Gallegos

Artificial lighting is a key factor in Closed Production Plant Systems (CPPS). A significant light-emitting diode (LED) technology attribute is the emission of different wavelengths, called light recipes. Light recipes are typically configured in continuous mode, but can also be configured in pulsed mode to save energy. We propose two nonlinear models, i.e., genetic programing (GP) and feedforward artificial neural networks (FNNs) to predict energy consumption in CPPS. The generated models use the following input variables: intensity, red light component, blue light component, green light component, and white light component; and the following operation modes: continuous and pulsed light including pulsed frequency, and duty cycle as well energy consumption as output. A Spearman's correlation was applied to generate a model with only representative inputs. Two datasets were applied. The first (Test 1), with 5700 samples with similar input ranges, was used to train and evaluate, while the second (Test 2), included 160 total datapoints in different input ranges. The metrics that allowed a quantitative evaluation of the model's performance were MAPE, MSE, MAE, and SEE. Our implemented models achieved an accuracy of 96.1% for the GP model and 98.99% for the FNNs model. The models used in this proposal can be applied or programmed as part of the monitoring system for CPPS which prioritize energy efficiency. The nonlinear models provide a further analysis for energy savings due to the light recipe and operation light mode, i.e., pulsed and continuous on artificial LED lighting systems.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Dwi Ariyanti ◽  
Kazunori Ikebukuro ◽  
Koji Sode

Abstract Background The development of multiple gene expression systems, especially those based on the physical signals, such as multiple color light irradiations, is challenging. Complementary chromatic acclimation (CCA), a photoreversible process that facilitates the control of cellular expression using light of different wavelengths in cyanobacteria, is one example. In this study, an artificial CCA systems, inspired by type III CCA light-regulated gene expression, was designed by employing a single photosensor system, the CcaS/CcaR green light gene expression system derived from Synechocystis sp. PCC6803, combined with G-box (the regulator recognized by activated CcaR), the cognate cpcG2 promoter, and the constitutively transcribed promoter, the PtrcΔLacO promoter. Results One G-box was inserted upstream of the cpcG2 promoter and a reporter gene, the rfp gene (green light-induced gene expression), and the other G-box was inserted between the PtrcΔLacO promoter and a reporter gene, the bfp gene (red light-induced gene expression). The Escherichia coli transformants with plasmid-encoded genes were evaluated at the transcriptional and translational levels under red or green light illumination. Under green light illumination, the transcription and translation of the rfp gene were observed, whereas the expression of the bfp gene was repressed. Under red light illumination, the transcription and translation of the bfp gene were observed, whereas the expression of the rfp gene was repressed. During the red and green light exposure cycles at every 6 h, BFP expression increased under red light exposure while RFP expression was repressed, and RFP expression increased under green light exposure while BFP expression was repressed. Conclusion An artificial CCA system was developed to realize a multiple gene expression system, which was regulated by two colors, red and green lights, using a single photosensor system, the CcaS/CcaR system derived from Synechocystis sp. PCC6803, in E. coli. The artificial CCA system functioned repeatedly during red and green light exposure cycles. These results demonstrate the potential application of this CCA gene expression system for the production of multiple metabolites in a variety of microorganisms, such as cyanobacteria.


Sign in / Sign up

Export Citation Format

Share Document