Quantum mechanical double slit for molecular scattering

Science ◽  
2021 ◽  
Vol 374 (6570) ◽  
pp. 960-964 ◽  
Author(s):  
Haowen Zhou ◽  
William E. Perreault ◽  
Nandini Mukherjee ◽  
Richard N. Zare
2021 ◽  
Vol 9 ◽  
Author(s):  
William E. Perreault ◽  
Haowen Zhou ◽  
Nandini Mukherjee ◽  
Richard N. Zare

To control molecular scattering, we consider hydrogen molecules prepared in a coherent superposition of m states within a single rovibrational (v, j) energy eigenstate using Stark-induced adiabatic Raman passage (SARP). Specifically, SARP can prepare a bi-axial state of the HD molecule in which the HD bond axis exists simultaneously in two possible alignments at right angles to one another with a well-defined relative phase. We show that scattering from this biaxial state will interfere, resulting in a φ -dependent scattering intensity distribution, where φ is the azimuthal angle about the collision velocity direction. Using the scattering matrix extracted from our experiments on the rotationally inelastic collisions of quantum state prepared HD at low temperatures, we calculate the differential scattering cross-section dσ/dΩ, which shows an interference pattern as function of θ and φ in the image plane perpendicular to the collision velocity. The calculated scattering image shows that scattering from the bi-axial state directs molecules along well-defined angles, corresponding to interference maxima. Thus, the bi-axial state behaves like a double slit for molecular scattering. Moreover, by rotating the polarizations of the SARP preparation lasers, we can control the interference thereby altering the scattering angular distribution. This molecular interferometer, which experimentally measures the relative phases of the scattering matrix elements, allows a direct test of theoretical calculations on important, fundamental collision processes.


1997 ◽  
Vol 52 (5) ◽  
pp. 398-402 ◽  
Author(s):  
D. Sen ◽  
A. N. Basu ◽  
S. Sengupta

Abstract It is argued that two distinct types of complementarity are implied in Bohr's complementarity principle. While in the case of complementary variables it is the quantum mechanical uncertainty relation which is at work, the collapse hypothesis ensures this exclusiveness in the so-called wave-particle complementarity experiments. In particular it is shown that the conventional analysis of the double slit experiment which invokes the uncertainty principle to explain the absence of the simultaneous knowledge of the which-slit information and the interference pattern is incorrect and implies consequences that are quantum mechanically inconsistent.


2009 ◽  
Vol 23 (15) ◽  
pp. 3255-3264 ◽  
Author(s):  
XIANG-YAO WU ◽  
BAI-JUN ZHANG ◽  
XIAO-JING LIU ◽  
BING LIU ◽  
CHUN-LI ZHANG ◽  
...  

Phenomena of electron, neutron, atomic, and molecular diffraction have been studied in many experiments, and these experiments have been explained by some theoretical works. We study neutron single and double-slit diffraction with a new quantum mechanical approach. The calculation results are compared with the experimental data obtained with cold neutrons.


2018 ◽  
Author(s):  
John joseph Taylor

A double slit experiment involving microorganisms is proposed. In addition an experiment testing whether the decisions of living organisms are quantum mechanical(in this case microorganisms) is discussed.


Author(s):  
M. Suhail Zubairy

One of the earliest and most important tenets of quantum mechanics is the wave-particle duality: light behaves sometimes like a wave and at other times as particle and similarly an electron can also behave both like a particle and as a wave. When the formal laws of quantum mechanics are formulated, the central quantity that describes the particles is the wave function. This points to the need for a good understanding of the properties of the waves. This chapter introduces the concepts and most essential applications that are required to follow the discussion of quantum mechanical laws and systems. The basic characteristics of the waves, such as the superposition principle are presented, and the interference and the diffraction phenomena are discussed. The Young’s double slit experiment in analysed and the formation of interference pattern is explicitly shown. The Rayleigh criterion for the microscopic resolution is also derived.


2019 ◽  
Author(s):  
John joseph Taylor

A double slit experiment involving microorganisms is proposed. In addition an experiment testing whether the decisions of living organisms are quantum mechanical(in this case microorganisms) is discussed.


Sign in / Sign up

Export Citation Format

Share Document