Sequence of αPD-1 relative to local tumor irradiation determines the induction of abscopal antitumor immune responses

2021 ◽  
Vol 6 (58) ◽  
pp. eabg0117
Author(s):  
Joyce Wei ◽  
Welby Montalvo-Ortiz ◽  
Lola Yu ◽  
Amanda Krasco ◽  
Sarah Ebstein ◽  
...  

Although radiotherapy has been used for over a century to locally control tumor growth, alone it rarely induces an abscopal response or systemic antitumor immunity capable of inhibiting distal tumors outside of the irradiation field. Results from recent studies suggest that combining immune checkpoint blockades to radiotherapy may enhance abscopal activity. However, the treatment conditions and underlying immune mechanisms that consistently drive an abscopal response during radiation therapy combinations remain unknown. Here, we analyzed the antitumor responses at primary and distal tumor sites, demonstrating that the timing of αPD-1 antibody administration relative to radiotherapy determined the potency of the induced abscopal response. Blockade of the PD-1 pathway after local tumor irradiation resulted in the expansion of polyfunctional intratumoral CD8+ T cells, a decrease in intratumoral dysfunctional CD8+ T cells, expansion of reprogrammable CD8+ T cells, and induction of potent abscopal responses. However, administration of αPD-1 before irradiation almost completely abrogated systemic immunity, which associated with increased radiosensitivity and death of CD8+ T cells. The subsequent reduction of polyfunctional effector CD8+ T cells at the irradiated tumor site generated a suboptimal systemic antitumor response and the loss of abscopal responses. Therefore, this report maximizes the potential synergy between radiotherapy and αPD-1 immunotherapy, information that will benefit clinical combinations of radiotherapy and immune checkpoint blockade.

2021 ◽  
Vol 14 (9) ◽  
pp. 101170
Author(s):  
Vera Bauer ◽  
Fatima Ahmetlić ◽  
Nadine Hömberg ◽  
Albert Geishauser ◽  
Martin Röcken ◽  
...  

2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii108-ii108
Author(s):  
Jayeeta Ghose ◽  
Baisakhi Raychaudhuri ◽  
Kevin Liu ◽  
William Jiang ◽  
Pooja Gulati ◽  
...  

Abstract BACKGROUND Glioblastoma (GBM) is associated with systemic and intratumoral immunosuppression. Part of this immunosuppression is mediated by myeloid derived suppressor cells (MDSCs). Preclinical evidence shows that ibrutinib, a tyrosine kinase inhibitor FDA approved for use in chronic lymphocytic leukemia and known to be CNS penetrant, can decrease MDSC generation and function. Also, focal radiation therapy (RT) synergizes with anti-PD-1 therapy in mouse GBM models. Thus, we aimed to test the combination of these approaches on immune activation and survival in a preclinical immune-intact GBM mouse model. METHODS C57BL/6 mice intracranially implanted with the murine glioma cell line GL261-Luc2 were divided into 8 groups consisting of treatments with ibrutinib, RT (10 Gy SRS), or anti-PD-1 individually or in each combination (along with a no treatment control group). Immune cell subset changes (flow-cytometry) and animal survival (Kaplan-Meier) were assessed (n=10 mice per group). RESULTS Median survival of the following groups including control (28 days), ibrutinib (27 days), RT (30 days) or anti-PD-1 (32 days) showed no significant differences. However, a significant improvement in median survival was seen in mice given combinations of ibrutinib+RT (35 days), ibrutinib+anti-PD-1 (38 days), and triple therapy with ibrutinib+RT+anti-PD-1 (48 days, p < 0.05) compared to controls or single treatment groups. The reproducible survival benefit of triple combination therapy was abrogated in the setting of CD4+ and CD8+ T cell depletion. Contralateral intracranial tumor re-challenge in long-term surviving mice suggested generation of tumor-specific immune memory responses. The immune profile of the tumor microenvironment (TME) showed increased cytotoxic CD8+ T cells and decreased MDSCs and regulatory T cells in the triple combination therapy mice compared to controls. CONCLUSION The combination of ibrutinib, focal RT, and anti-PD-1 immune checkpoint blockade led to a significant survival benefit compared to controls in a preclinical model of GBM.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii96-ii96
Author(s):  
Catalina Lee Chang ◽  
Jason Miska ◽  
David Hou ◽  
Aida Rashidi ◽  
Peng Zhang ◽  
...  

Abstract Immunotherapy has revolutionized the treatment of many tumors. However, most glioblastoma (GBM) patients have not, so far, benefited from such successes. With the goal of exploring ways to boost anti-GBM immunity, we developed a B-cell-based vaccine (BVax) that consists of 4-1BBL+ B cells activated with CD40 agonism and IFNg stimulation. BVaxmigrate to key secondary lymphoid organs and are proficient at antigen cross-presentation, which promotes both the survival and functionality of CD8+ T cells. A combination of radiation, BVax, and PD-L1 blockade conferred tumor eradication in 80% of treated tumor-bearing animals. This treatment elicited immunologic memory that prevented the growth of new tumors upon subsequent re-injection in cured mice. GBM patient-derived BVax were successful in activating autologous CD8+ T cells; these T cells showed a strong ability to kill autologous glioma cells. In addition to the role in activating CD8+ T cells, BVax produce tumor-specific antibodies able to control tumor growth via antibody-mediated cell cytotoxicity. In conclusion, BVax tackles GBM immunosurveillance escape by using both cellular (CD8+ T-cell activation) and humoral (anti-tumor antibody production) immunity. Our study provides an efficient alternative to current immunotherapeutic approaches that can be readily translated to the clinic.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A888-A888
Author(s):  
Laura Ridgley ◽  
Angus Dalgleish ◽  
Mark Bodman-Smith

BackgroundVγ9Vδ2 T-cells are a subset of cells with a crucial role in immunosurveillance which can be activated and expanded by multiple means to stimulate effector responses, often exploited in cancer immunotherapy. Little is known about the expression of checkpoint molecules on this cell population and whether the ligation of these molecules can regulate their activity. The aim of this study was to assess the expression of activatory and inhibitory markers on Vγ9Vδ2 T-cells to assess potential avenues of regulation to target with immunotherapy.MethodsPBMCs were isolated from healthy donors and the expression of activatory and inhibitory receptors was assessed on Vγ9Vδ2 T-cells by flow cytometry at baseline, following 24 hours activation and 14 days expansion using zoledronic acid (ZA) and Bacillus Calmette-Guerin (BCG), both with IL-2. Activation and expansion of Vδ2 cells was assessed by expression of CD69 and by frequency of Vδ2 cells, respectively. Production of effector molecules was also assessed following coculture with various tumour cell targets. The effect of immune checkpoint blockade on Vγ9Vδ2 T-cells was also assessed.ResultsVγ9Vδ2 T-cells constitutively expressed high levels of NK-associated activatory markers NKG2D and DNAM1 which remained high following stimulation with ZA and BCG. Vγ9Vδ2 T-cells expressed variable levels of checkpoint inhibitor molecules at baseline with high levels of BTLA, KLRG1 and NKG2A and intermediate levels of PD1, TIGIT and VISTA. Expression of checkpoint receptors were modulated following activation and expansion with ZA and BCG with decreased expression of BTLA and upregulation of numerous markers including PD1, TIGIT, TIM3, LAG3 and VISTA. Expression of these markers is further modulated upon coculture with tumour cell lines with changes reflecting activation of these cells with Vγ9Vδ2 T-cells expressing inhibitory receptors PD1 and NKG2A producing the highest level of TNF.ConclusionsOur data reveals unique characteristics of Vδ2 in terms of their expression of immune checkpoints, which provide a mechanism which may be utilised by tumour cells to subvert Vγ9Vδ2 T-cell cytotoxicity. Our work suggests different profiles of immune checkpoints dependent on the method of stimulation. This highlights importance of expansion method in the function of Vγ9Vδ2 T-cells. Furthermore, this work suggests important candidates for blockade by immune checkpoint therapy in order to increase the successful use of Vγ9Vδ2 T-cells in cancer immunotherapy.


Cancer Cell ◽  
2018 ◽  
Vol 34 (4) ◽  
pp. 691 ◽  
Author(s):  
Roberta Zappasodi ◽  
Sadna Budhu ◽  
Matthew D. Hellmann ◽  
Michael A. Postow ◽  
Yasin Senbabaoglu ◽  
...  

2020 ◽  
Vol 8 (Suppl 2) ◽  
pp. A5.1-A5
Author(s):  
A Martinez-Usatorre ◽  
E Kadioglu ◽  
C Cianciaruso ◽  
B Torchia ◽  
J Faget ◽  
...  

BackgroundImmune checkpoint blockade (ICB) with antibodies against PD-1 or PD-L1 may provide therapeutic benefits in patients with non-small cell lung cancer (NSCLC). However, most tumours are resistant and cases of disease hyper-progression have also been reported.Materials and MethodsGenetically engineered mouse models of KrasG12Dp53null NSCLC were treated with cisplatin along with antibodies against angiopoietin-2/VEGFA, PD-1 and CSF1R. Tumour growth was monitored by micro-computed tomography and the tumour vasculature and immune cell infiltrates were assessed by immunofluorescence staining and flow cytometry.ResultsCombined angiopoietin-2/VEGFA blockade by a bispecific antibody (A2V) modulated the vasculature and abated immunosuppressive macrophages while increasing CD8+effector T cells in the tumours, achieving disease stabilization comparable or superior to cisplatin-based chemotherapy. However, these immunological responses were unexpectedly limited by the addition of a PD-1 antibody, which paradoxically enhanced progression of a fraction of the tumours through a mechanism involving regulatory T cells and macrophages. Elimination of tumour-associated macrophages with a CSF1R-blocking antibody induced NSCLC regression in combination with PD-1 blockade and cisplatin.ConclusionsThe immune cell composition of the tumour determines the outcome of PD-1 blockade. In NSCLC, high infiltration of regulatory T cells and immunosuppressive macrophages may account for tumour hyper-progression upon ICB.Disclosure InformationA. Martinez-Usatorre: None. E. Kadioglu: None. C. Cianciaruso: None. B. Torchia: None. J. Faget: None. E. Meylan: None. M. Schmittnaegel: None. I. Keklikoglou: None. M. De Palma: None.


Cancers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2762 ◽  
Author(s):  
Xinrui Zhao ◽  
Chunlin Shao

Radiotherapy (RT) is a conventional method for clinical treatment of local tumors, which can induce tumor-specific immune response and cause the shrinkage of primary tumor and distal metastases via mediating tumor infiltration of CD8+ T cells. Ionizing radiation (IR) induced tumor regression outside the radiation field is termed as abscopal effect. However, due to the mobilization of immunosuppressive signals by IR, the activated CD8+T cells are not sufficient to maintain a long-term positive feedback to make the tumors regress completely. Eventually, the “hot” tumors gradually turn to “cold”. With the advent of emerging immunotherapy, the combination of immune checkpoint blockade (ICB) and local RT has produced welcome changes in stubborn metastases, especially anti-PD-1/PD-L1 and anti-CTLA-4 which have been approved in clinical cancer treatment. However, the detailed mechanism of the abscopal effect induced by combined therapy is still unclear. Therefore, how to formulate a therapeutic schedule to maximize the efficacy should be took into consideration according to specific circumstance. This paper reviewed the recent research progresses in immunomodulatory effects of local radiotherapy on the tumor microenvironment, as well as the unique advantage for abscopal effect when combined with ICB, with a view to exploring the potential application value of radioimmunotherapy in clinic.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Asiel A. Benitez ◽  
Sara Khalil-Agüero ◽  
Anjali Nandakumar ◽  
Namita T. Gupta ◽  
Wen Zhang ◽  
...  

AbstractThe endogenous anti-tumor responses are limited in part by the absence of tumor-reactive T cells, an inevitable consequence of thymic central tolerance mechanisms ensuring prevention of autoimmunity. Here we show that tumor rejection induced by immune checkpoint blockade is significantly enhanced in Aire-deficient mice, the epitome of central tolerance breakdown. The observed synergy in tumor rejection extended to different tumor models, was accompanied by increased numbers of activated T cells expressing high levels of Gzma, Gzmb, Perforin, Cxcr3, and increased intratumoural levels of Cxcl9 and Cxcl10 compared to wild-type mice. Consistent with Aire’s central role in T cell repertoire selection, single cell TCR sequencing unveiled expansion of several clones with high tumor reactivity. The data suggest that breakdown in central tolerance synergizes with immune checkpoint blockade in enhancing anti-tumor immunity and may serve as a model to unmask novel anti-tumor therapies including anti-tumor TCRs, normally purged during central tolerance.


Sign in / Sign up

Export Citation Format

Share Document