Tensegrity metamaterials for soft robotics

2020 ◽  
Vol 5 (45) ◽  
pp. eabd9158 ◽  
Author(s):  
Li Wen ◽  
Fei Pan ◽  
Xilun Ding
Keyword(s):  

3D-printed flexible tensegrities with metamaterial properties enable customizable complex locomotion in soft robots.

2020 ◽  
Vol 26 (8) ◽  
pp. 1345-1361 ◽  
Author(s):  
Yee Ling Yap ◽  
Swee Leong Sing ◽  
Wai Yee Yeong

Purpose Soft robotics is currently a rapidly growing new field of robotics whereby the robots are fundamentally soft and elastically deformable. Fabrication of soft robots is currently challenging and highly time- and labor-intensive. Recent advancements in three-dimensional (3D) printing of soft materials and multi-materials have become the key to enable direct manufacturing of soft robots with sophisticated designs and functions. Hence, this paper aims to review the current 3D printing processes and materials for soft robotics applications, as well as the potentials of 3D printing technologies on 3D printed soft robotics. Design/methodology/approach The paper reviews the polymer 3D printing techniques and materials that have been used for the development of soft robotics. Current challenges to adopting 3D printing for soft robotics are also discussed. Next, the potentials of 3D printing technologies and the future outlooks of 3D printed soft robotics are presented. Findings This paper reviews five different 3D printing techniques and commonly used materials. The advantages and disadvantages of each technique for the soft robotic application are evaluated. The typical designs and geometries used by each technique are also summarized. There is an increasing trend of printing shape memory polymers, as well as multiple materials simultaneously using direct ink writing and material jetting techniques to produce robotics with varying stiffness values that range from intrinsically soft and highly compliant to rigid polymers. Although the recent work is done is still limited to experimentation and prototyping of 3D printed soft robotics, additive manufacturing could ultimately be used for the end-use and production of soft robotics. Originality/value The paper provides the current trend of how 3D printing techniques and materials are used particularly in the soft robotics application. The potentials of 3D printing technology on the soft robotic applications and the future outlooks of 3D printed soft robotics are also presented.


2021 ◽  
Author(s):  
Patrick Coulson

<b>In recent years, soft robotics has gained wide interest in the research field and has also garnered some commercial success. This is because soft robots are comprised of soft materials that have inherent compliance which lends them to a wide variety of applications that are not suited to traditional hard-bodied robots. </b><p>Soft robots are generally created using a casting process, which comes with limitations to the geometry due to the removal of the cast body from the mould. This research seeks to enhance the capabilities of soft robotic limbs using multi-material Polyjet printing – a recently developed additive manufacturing technology – which allows for geometric freedom and variable materials within a singular soft 3D print which is not feasible using other fabrication methods. </p> <p>This research draws inspiration from natural mechanisms such as muscular hydrostats, to enable the exploration of singular channel soft robots that exhibit bending, twisting, elongation, and expansion all in one 3D print. The geometric freedom and variable materiality of the Stratasys J750 produce actuation results for each motion that cannot be easily replicated using traditional fabrication techniques. The printable materials of the Stratasys J750 were found to have tendencies to tear upon inflation, however, a large array of prints with complex geometry were able to successfully actuate despite this. In some areas, results outperformed actuators made using other fabrication techniques, as was particularly evident in the twisting actuators. Through fine-tuned parametric control with equation-driven modelling, this portfolio presents a method for soft robotic design and construction that can produce a limb with multiple motions and up to 5 axes of movement that can be tailored to specific pre-defined applications.</p>


2021 ◽  
Author(s):  
Patrick Coulson

<b>In recent years, soft robotics has gained wide interest in the research field and has also garnered some commercial success. This is because soft robots are comprised of soft materials that have inherent compliance which lends them to a wide variety of applications that are not suited to traditional hard-bodied robots. </b><p>Soft robots are generally created using a casting process, which comes with limitations to the geometry due to the removal of the cast body from the mould. This research seeks to enhance the capabilities of soft robotic limbs using multi-material Polyjet printing – a recently developed additive manufacturing technology – which allows for geometric freedom and variable materials within a singular soft 3D print which is not feasible using other fabrication methods. </p> <p>This research draws inspiration from natural mechanisms such as muscular hydrostats, to enable the exploration of singular channel soft robots that exhibit bending, twisting, elongation, and expansion all in one 3D print. The geometric freedom and variable materiality of the Stratasys J750 produce actuation results for each motion that cannot be easily replicated using traditional fabrication techniques. The printable materials of the Stratasys J750 were found to have tendencies to tear upon inflation, however, a large array of prints with complex geometry were able to successfully actuate despite this. In some areas, results outperformed actuators made using other fabrication techniques, as was particularly evident in the twisting actuators. Through fine-tuned parametric control with equation-driven modelling, this portfolio presents a method for soft robotic design and construction that can produce a limb with multiple motions and up to 5 axes of movement that can be tailored to specific pre-defined applications.</p>


2021 ◽  
Vol 6 (2) ◽  
pp. 795-802
Author(s):  
Ryan L. Truby ◽  
Lillian Chin ◽  
Daniela Rus
Keyword(s):  

2019 ◽  
Author(s):  
Paulo Dos Santos ◽  
Guilherme Da Silva ◽  
Juliana Silva

This study seeks to explain a new theme that has a potential of great impact in the future. Soft robots are robots that, because they are soft and not limited by their axes, can go beyond how rigid robots work. The objective of this study is to present a review of the literature on soft robots. The literature shows little research on these robots, presenting difficulties mainly in the research of sensors and materials to be used in their construction. Despite the difficulties, the increase of research with this approach will have great impacts, mainly in the medical area.


Micromachines ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 485 ◽  
Author(s):  
Gianni Stano ◽  
Luca Arleo ◽  
Gianluca Percoco

Air tightness is a challenging task for 3D-printed components, especially for fused filament fabrication (FFF), due to inherent issues, related to the layer-by-layer fabrication method. On the other hand, the capability of 3D print airtight cavities with complex shapes is very attractive for several emerging research fields, such as soft robotics. The present paper proposes a repeatable methodology to 3D print airtight soft actuators with embedded air connectors. The FFF process has been optimized to manufacture monolithic bending PneuNets (MBPs), an emerging class of soft robots. FFF has several advantages in soft robot fabrication: (i) it is a fully automated process which does not require manual tasks as for molding, (ii) it is one of the most ubiquitous and inexpensive (FFF 3D printers costs < $200) 3D-printing technologies, and (iii) more materials can be used in the same printing cycle which allows embedding of several elements in the soft robot body. Using commercial soft filaments and a dual-extruder 3D printer, at first, a novel air connector which can be easily embedded in each soft robot, made via FFF technology with a single printing cycle, has been fabricated and tested. This new embedded air connector (EAC) prevents air leaks at the interface between pneumatic pipe and soft robot and replaces the commercial air connections, often origin of leakages in soft robots. A subsequent experimental study using four different shapes of MBPs, each equipped with EAC, showed the way in which different design configurations can affect bending performance. By focusing on the best performing shape, among the tested ones, the authors studied the relationship between bending performance and air tightness, proving how the Design for Additive Manufacturing approach is essential for advanced applications involving FFF. In particular, the relationship between chamber wall thickness and printing parameters has been analyzed, the thickness of the walls has been studied from 1.6 to 1 mm while maintaining air tightness and improving the bending angle by 76.7% under a pressure of 4 bar. It emerged that the main printing parameter affecting chamber wall air tightness is the line width that, in conjunction with the wall thickness, can ensure air tightness of the soft actuator body.


2019 ◽  
Vol 4 (10) ◽  
pp. 1970054
Author(s):  
Yuan‐Fang Zhang ◽  
Colin Ju‐Xiang Ng ◽  
Zhe Chen ◽  
Wang Zhang ◽  
Sahil Panjwani ◽  
...  

2020 ◽  
Author(s):  
Maria Guix ◽  
Rafael Mestre ◽  
Tania Patiño ◽  
Marco De Corato ◽  
Giulia Zarpellon ◽  
...  

AbstractBioinspired hybrid soft robots combining living actuation and synthetic components are an emerging field in the development of advanced actuators and other robotic platforms (i.e. swimmers, crawlers, walkers). The integration of biological components offers unique properties (e.g. adaptability, response to external stimuli) that artificial materials cannot replicate with accuracy, being skeletal and cardiac muscle cells the preferred candidates for providing contractile actuation. Here, we present a skeletal-muscle-based swimming biobot with a 3D-printed serpentine spring skeleton that provides mechanical integrity and self-stimulation during the cell maturation process. The restoring force inherent to the spring system allows a dynamic skeleton compliance upon spontaneous muscle contraction, leading to a novel cyclic mechanical stimulation process that improves the muscle force output without external stimuli. Optimization of the 3D-printed skeletons is carried out by studying the geometrical stiffnesses of different designs via finite element analysis. Upon electrical actuation of the muscle tissue, two types of motion mechanisms are experimentally observed: i) directional swimming when the biobot is at the liquid-air interface and ii) coasting motion when it is near the bottom surface. The integrated compliant skeleton provides both the mechanical self-stimulation and the required asymmetry for directional motion, displaying its maximum velocity at 5 Hz (800 micrometer second−1, 3 body length second−1). This skeletal muscle-based bio-hybrid swimmer attains speeds comparable to cardiac-based bio-hybrid robots and outperforms other muscle-based swimmers. The integration of serpentine-like structures in hybrid robotic systems allows self-stimulation processes that could lead to higher force outputs in current and future biomimetic robotic platforms.


2021 ◽  
Author(s):  
Pengfei Lv ◽  
Xiao Yang ◽  
Hari Krishna Bisoyi ◽  
Hao Zeng ◽  
Xuan Zhang ◽  
...  

Sophisticated soft matter engineering has been endorsed as an emerging paradigm for developing untethered soft robots with built-in electronic functions and biomimetic adaptation capacities. However, the integration of flexible electronic...


Sign in / Sign up

Export Citation Format

Share Document