scholarly journals Diacylglycerol kinase ζ promotes allergic airway inflammation and airway hyperresponsiveness through distinct mechanisms

2019 ◽  
Vol 12 (597) ◽  
pp. eaax3332 ◽  
Author(s):  
Brenal K. Singh ◽  
Wen Lu ◽  
Amanda M. Schmidt Paustian ◽  
Moyar Q. Ge ◽  
Cynthia J. Koziol-White ◽  
...  

Asthma is a chronic allergic inflammatory airway disease caused by aberrant immune responses to inhaled allergens, which leads to airway hyperresponsiveness (AHR) to contractile stimuli and airway obstruction. Blocking T helper 2 (TH2) differentiation represents a viable therapeutic strategy for allergic asthma, and strong TCR-mediated ERK activation blocks TH2 differentiation. Here, we report that targeting diacylglycerol (DAG) kinase zeta (DGKζ), a negative regulator of DAG-mediated cell signaling, protected against allergic asthma by simultaneously reducing airway inflammation and AHR though independent mechanisms. Targeted deletion of DGKζ in T cells decreased type 2 inflammation without reducing AHR. In contrast, loss of DGKζ in airway smooth muscle cells decreased AHR but not airway inflammation. T cell–specific enhancement of ERK signaling was only sufficient to limit type 2 airway inflammation, not AHR. Pharmacological inhibition of DGK diminished both airway inflammation and AHR in mice and also reduced bronchoconstriction of human airway samples in vitro. These data suggest that DGK is a previously unrecognized therapeutic target for asthma and reveal that the inflammatory and AHR components of asthma are not as interdependent as generally believed.

2021 ◽  
Vol 12 ◽  
Author(s):  
Lingna Xue ◽  
Cui Li ◽  
Guangbo Ge ◽  
Shaoyan Zhang ◽  
Liming Tian ◽  
...  

The incidence of asthma has increased in recent decades. Although corticosteroids and bronchodilators are used in clinical practice, the control of asthma remains a challenge. Allergic asthma is characterized airway inflammation mediated by type 2 immune response. Group 2 innate lymphoid cells (ILC2s) are an important source of type 2 cytokines IL-5 and IL-13, which contribute to the progress of asthma. Jia-Wei-Yu-Ping-Feng-San (JWYPFS), a traditional Chinese medicine, has been widely used to treat asthma in China. In this study we investigated the mechanisms of JWYPFS in the treatment of asthma, especially the effect on ILC2s important in airway inflammation. Female C57BL/6 mice were sensitized and challenged with OVA to establish a model of allergic asthma. Airway hyperresponsiveness was examined by direct airway resistance analysis. Inflammatory cell counts were determined in bronchoalveolar lavage fluid (BALF). Inflammatory cell infiltration and mucus hypersecretion in lung tissue sections was observed by HE and PAS staining, respectively. The numbers and proportions of ILC2s as well as the ILC2s-related transcription factors GATA3, IRF4, and type 2 cytokines were measured in lung tissue samples. Additionally, ILC2s were collected from mouse lung; ILC2s-related cytokines and GATA3 and IRF4 were evaluated after IL-33-induced activation of ILC2s in vitro. Elevated inflammatory cells, mucus secretion, airway hyperresponsiveness and type 2 cytokines in the OVA-treated asthma group indicated that an allergic asthma model had been established. JWYPFS treatment attenuated airway resistance and reduced inflammatory cells including eosinophils, and inhibited mucus production and type 2 cytokines in these asthmatic mice. Moreover, JWYPFS treatment dramatically decreased the numbers and proportions of ILC2s and the mRNA levels of GATA3 and IRF4. In an in vitro experiment JWYPFS significantly suppressed GATA3, IRF4 and type 2 cytokine expression, including IL-5 and IL-13 in IL-33-stimulated ILC2s. JWYPFS alleviates ILC2s-mediated airway inflammation, suggesting that JWYPFS might be an effective agent to treat allergic asthma.


2015 ◽  
Vol 309 (8) ◽  
pp. L789-L800 ◽  
Author(s):  
Akihiko Taniguchi ◽  
Nobuaki Miyahara ◽  
Koichi Waseda ◽  
Etsuko Kurimoto ◽  
Utako Fujii ◽  
...  

The receptor for advanced glycation end-products (RAGE) is a multiligand receptor that belongs to the immunoglobulin superfamily. RAGE is reported to be involved in various inflammatory disorders; however, studies that address the role of RAGE in allergic airway disease are inconclusive. RAGE-sufficient (RAGE+/+) and RAGE-deficient (RAGE−/−) mice were sensitized to ovalbumin, and airway responses were monitored after ovalbumin challenge. RAGE−/− mice showed reduced eosinophilic inflammation and goblet cell metaplasia, lower T helper type 2 (Th2) cytokine production from spleen and peribronchial lymph node mononuclear cells, and lower numbers of group 2 innate lymphoid cells in the lung compared with RAGE+/+ mice following sensitization and challenge. Experiments using irradiated, chimeric mice showed that the mice expressing RAGE on radio-resistant structural cells but not hematopoietic cells developed allergic airway inflammation; however, the mice expressing RAGE on hematopoietic cells but not structural cells showed reduced airway inflammation. In contrast, absence of RAGE expression on structural cells enhanced innate airway hyperresponsiveness (AHR). In the absence of RAGE, increased interleukin (IL)-33 levels in the lung were detected, and blockade of IL-33 receptor ST2 suppressed innate AHR in RAGE−/− mice. These data identify the importance of RAGE expressed on lung structural cells in the development of allergic airway inflammation, T helper type 2 cell activation, and group 2 innate lymphoid cell accumulation in the airways. RAGE on lung structural cells also regulated innate AHR, likely through the IL-33-ST2 pathway. Thus manipulating RAGE represents a novel therapeutic target in controlling allergic airway responses.


2020 ◽  
Vol 21 (21) ◽  
pp. 7930 ◽  
Author(s):  
Ioannis Morianos ◽  
Maria Semitekolou

Allergic asthma is a chronic inflammatory disease of the airways characterized by airway hyperresponsiveness (AHR), chronic airway inflammation, and excessive T helper (Th) type 2 immune responses against harmless airborne allergens. Dendritic cells (DCs) represent the most potent antigen-presenting cells of the immune system that act as a bridge between innate and adaptive immunity. Pertinent to allergic asthma, distinct DC subsets are known to play a central role in initiating and maintaining allergen driven Th2 immune responses in the airways. Nevertheless, seminal studies have demonstrated that DCs can also restrain excessive asthmatic responses and thus contribute to the resolution of allergic airway inflammation and the maintenance of pulmonary tolerance. Notably, the transfer of tolerogenic DCs in vivo suppresses Th2 allergic responses and protects or even reverses established allergic airway inflammation. Thus, the identification of novel DC subsets that possess immunoregulatory properties and can efficiently control aberrant asthmatic responses is critical for the re-establishment of tolerance and the amelioration of the asthmatic disease phenotype.


2021 ◽  
Author(s):  
Tianli Cheng ◽  
jianfu heng ◽  
Quanhui Mei ◽  
Lijun Chen ◽  
Feng Zeng

Abstract BackgroundMesenchymal stem cells (MSCs) have been used to treat asthma in a mouse model. However, the efficacy and mechanism of MSCs are not elucidated. MicroRNAs (miRNAs) play a key rolein asthma and related to the aim of this study was to illustrate the role of miR21 and its influence on MSC migration in asthma model. MethodsA mouse model of asthma was established using cockroach extract (CRE), and miR-21 expression was examined. A miR-21 lentivirus construct was used to investigate the role of miR-21 in vivo and in vitro in mouse bone marrow-derived (BM-) MSCs. A TOPFlash reporter gene assay was used to study the signaling downstream of miR-21. IL-4, IL-5, IL-13, IgE, and IgG1 levels in bronchoalveolar lavage fluids were determined by enzyme-linked immunosorbent assays.ResultsMiR-21 was upregulated in CRE-induced asthmatic mice. MiR-21 promoted allergic airway inflammation and airway hyperreactivity by inhibiting BM-MSC migration. β-Catenin was found to act downstream of miR-21 as a negative regulator of miR-21. Rescue experiments verified that miR-21 inhibited BM-MSC migration by suppressing Wnt/β-catenin signaling.ConclusionMiR-21 promotes allergic airway inflammation and AHR and inhibits BM-MSC migration through Wnt/β-catenin signaling, which may serve as an effective therapeutic target for asthma.


2012 ◽  
Vol 302 (3) ◽  
pp. L308-L315 ◽  
Author(s):  
Peter J. Oldenburg ◽  
Jill A. Poole ◽  
Joseph H. Sisson

There is very limited knowledge about the effects of alcohol on airway hyperresponsiveness and inflammation in asthma. Historical accounts of alcohol administration to patients with breathing problems suggest that alcohol may have bronchodilating properties. We hypothesized that alcohol exposure will alter airway hyperresponsiveness (AHR) and pulmonary inflammation in a mouse model of allergic asthma. To test this hypothesis, BALB/c mice were fed either 18% alcohol or water and then sensitized and challenged with ovalbumin (OVA). AHR was assessed by means of ventilation or barometric plethysmography and reported as either total lung resistance or enhanced pause, respectively. Airway inflammation was assessed by total and differential cell counts in bronchoalveolar lavage fluid (BALF), cytokine levels in BALF, lung histology, and serum immunoglobulin E (IgE) levels. Alcohol feeding significantly blocked methacholine-induced increases in AHR compared with water-fed controls. Alcohol feeding significantly reduced total cell numbers (64%) as well as the number of eosinophils (84%) recruited to the lungs of these mice. Modest changes in lung pathology were also observed. Alcohol exposure led to a reduction of IgE in the serum of the EtOH OVA mice. These data demonstrate that alcohol exposure blunts AHR and dampens allergic airway inflammation indices in allergic mice and suggest that there may be an important role for alcohol in the modulation of asthma. These data provide an in vivo basis for previous clinical observations in humans substantiating the bronchodilator properties of alcohol and for the first time demonstrates an alcohol-induced reduction of allergic inflammatory cells in a mouse model of allergic asthma.


2018 ◽  
Vol 9 (3) ◽  
pp. 465-476 ◽  
Author(s):  
M.C. Casaro ◽  
A.R. Crisma ◽  
A.T. Vieira ◽  
G.H.M. Silva ◽  
E. Mendes ◽  
...  

Allergic asthma is a chronic disease mainly characterised by eosinophil inflammation and airway remodelling. Many studies have shown that the gut microbiota of allergic individuals differs from that of non-allergic individuals. Although high levels of bifidobacteria have been associated with healthy persons, Bifidobacterium adolescentis ATCC 15703, a gut bacteria, has been associated with allergic individuals in some clinical studies. The relationship between B. adolescentis ATCC 15703 and asthma or allergies has not been well elucidated, and its effect may be dependent on the host’s genetic profile or disease state. To elucidate this question, we evaluated the role of preventive B. adolescentis ATCC 15703 treatment on experimental allergic airway inflammation in two genetically different mouse strains, Balb/c and C57BL/6 (B6). Balb/c mice display a greater predisposition to develop allergic responses than B6 mice. Oral preventive treatment with B. adolescentis ATCC 15703 modulated experimental allergic airway inflammation, specifically in Balb/c mice, which showed decreased levels of eosinophils in the airway. B6 mice did not exhibit any significant alterations in eosinophils but showed an increased influx of total leukocytes and neutrophils into the airway. The mechanism underlying the beneficial effects of these bacteria in experimental allergic mice may involve products of bacteria metabolism, as dead bacteria did not mimic the ability of live B. adolescentis ATCC 15703 to attenuate the influx of eosinophils into the airway. To conclude, preventive oral B. adolescentis ATCC 15703 treatment can attenuate the major characteristic of allergic asthma, eosinophil airway influx, in Balb/c but not B6 mice. These results suggest that oral treatment with this specific live bacterial strain may have therapeutic potential for the treatment of allergic airway disease, although its effect is mouse-strain-dependent.


2018 ◽  
Vol 215 (8) ◽  
pp. 2157-2174 ◽  
Author(s):  
Ai-Hua Lei ◽  
Qiang Xiao ◽  
Gao-Yu Liu ◽  
Kun Shi ◽  
Qiong Yang ◽  
...  

Group 2 innate lymphoid cells (ILC2s) are emerging as key players in the pathogenesis of allergic airway inflammation. The mechanisms regulating ILC2, however, are not fully understood. Here, we found that ICAM-1 is required for the development and function of ILC2. ICAM-1–deficient (ICAM-1−/−) mice displayed significantly lower levels of ILC2s in the bone marrow and peripheral tissues than wild-type controls. CLP transfer and in vitro culture assays revealed that the regulation of ILC2 by ICAM-1 is cell intrinsic. Furthermore, ILC2s from ICAM-1−/− mice were functionally impaired, as indicated by the diminished production of type-2 cytokines in response to IL-33 challenge. The reduction in lung ILC2s caused a clear remission of airway inflammation in ICAM-1−/− mice after administration of papain or Alternaria alternata. We further demonstrate that ILC2 defects caused by ICAM-1 deficiency are due to ERK signaling-dependent down-regulation of GATA3 protein. Collectively, these observations identify ICAM-1 as a novel regulator of ILC2.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Haruka Aoki ◽  
Chihiro Mogi ◽  
Fumikazu Okajima

An acidic microenvironment has been shown to evoke a variety of airway responses, including cough, bronchoconstriction, airway hyperresponsiveness (AHR), infiltration of inflammatory cells in the lung, and stimulation of mucus hyperproduction. Except for the participation of transient receptor potential vanilloid-1 (TRPV1) and acid-sensing ion channels (ASICs) in severe acidic pH (of less than 6.0)-induced cough and bronchoconstriction through sensory neurons, the molecular mechanisms underlying extracellular acidic pH-induced actions in the airways have not been fully understood. Recent studies have revealed that ovarian cancer G protein-coupled receptor 1 (OGR1)-family G protein-coupled receptors, which sense pH of more than 6.0, are expressed in structural cells, such as airway smooth muscle cells and epithelial cells, and in inflammatory and immune cells, such as eosinophils and dendritic cells. They function in a variety of airway responses related to the pathophysiology of inflammatory diseases, including allergic asthma. In the present review, we discuss the roles of ionotropic TRPV1 and ASICs and metabotropic OGR1-family G protein-coupled receptors in the airway inflammation and AHR in asthma and respiratory diseases.


Author(s):  
Joseph J. Mackel ◽  
Jaleesa M. Garth ◽  
MaryJane Jones ◽  
Diandra A. Ellis ◽  
Jonathan P. Blackburn ◽  
...  

Exposure to fungi can result in a wide range of comorbidities depending on the immune status of the host. Chronic exposure and reactivity to fungi such as Aspergillus fumigatus can result in conditions such as severe asthma with fungal sensitization (SAFS) or allergic bronchopulmonary aspergillosis (ABPA). However, the pathophysiology of SAFS and ABPA are not well understood. Here, we report that the chitinase-like protein YKL-40 is elevated in lung lavage fluid from human asthmatics that are sensitized to fungi. Initial studies demonstrated that mice deficient in the murine ortholog of YKL-40, breast regression protein-39 (BRP-39, chitinase-3-like 1, Chi3l1), were not more susceptible to acute infection with A. fumigatus. However, in an experimental model of fungal-associated allergic airway inflammation (fungal asthma), Chi3l1-/- mice had significantly increased airway hyperresponsiveness (AHR). Surprisingly, increased AHR in Chi3l1-/- mice occurred in the presence of significantly lower type 2 responses (decreased eosinophil numbers and decreased IL-4, IL-5, IL-33, CCL17 and CCL22 levels), although type 1 and type 17 responses were not different. Increased AHR was not associated with differences in Periodic-acid-Schiff staining of lung tissue, differences in the expression of Muc5ac and Clca3, nor differences in lung edema. Bone marrow chimera studies revealed that the presence of BRP-39 in either the hematopoietic or non-hematopoietic compartment was sufficient for controlling AHR during fungal asthma. Collectively, these results indicate that BRP-39 protects against AHR during fungal asthma despite contributing to type 2 inflammation, thus highlighting an unexpected protective role for BRP-39 in allergic fungal asthma.


Sign in / Sign up

Export Citation Format

Share Document