scholarly journals A modulator of wild-type glucocerebrosidase improves pathogenic phenotypes in dopaminergic neuronal models of Parkinson’s disease

2019 ◽  
Vol 11 (514) ◽  
pp. eaau6870 ◽  
Author(s):  
Lena F. Burbulla ◽  
Sohee Jeon ◽  
Jianbin Zheng ◽  
Pingping Song ◽  
Richard B. Silverman ◽  
...  

Mutations in the GBA1 gene encoding the lysosomal enzyme β-glucocerebrosidase (GCase) represent the most common risk factor for Parkinson’s disease (PD). GCase has been identified as a potential therapeutic target for PD and current efforts are focused on chemical chaperones to translocate mutant GCase into lysosomes. However, for several GBA1-linked forms of PD and PD associated with mutations in LRRK2, DJ-1, and PARKIN, activating wild-type GCase represents an alternative approach. We developed a new small-molecule modulator of GCase called S-181 that increased wild-type GCase activity in iPSC-derived dopaminergic neurons from sporadic PD patients, as well as patients carrying the 84GG mutation in GBA1, or mutations in LRRK2, DJ-1, or PARKIN who had decreased GCase activity. S-181 treatment of these PD iPSC-derived dopaminergic neurons partially restored lysosomal function and lowered accumulation of oxidized dopamine, glucosylceramide and α-synuclein. Moreover, S-181 treatment of mice heterozygous for the D409V GBA1 mutation (Gba1D409V/+) resulted in activation of wild-type GCase and consequent reduction of GCase lipid substrates and α-synuclein in mouse brain tissue. Our findings point to activation of wild-type GCase by small-molecule modulators as a potential therapeutic approach for treating familial and sporadic forms of PD that exhibit decreased GCase activity.

Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 754
Author(s):  
Giulia Gaggi ◽  
Andrea Di Credico ◽  
Pascal Izzicupo ◽  
Giovanni Iannetti ◽  
Angela Di Baldassarre ◽  
...  

Parkinson’s disease (PD) is one of the most common neurodegenerative disease characterized by a specific and progressive loss of dopaminergic (DA) neurons and dopamine, causing motor dysfunctions and impaired movements. Unfortunately, available therapies can partially treat the motor symptoms, but they have no effect on non-motor features. In addition, the therapeutic effect reduces gradually, and the prolonged use of drugs leads to a significative increase in the number of adverse events. For these reasons, an alternative approach that allows the replacement or the improved survival of DA neurons is very appealing for the treatment of PD patients and recently the first human clinical trials for DA neurons replacement have been set up. Here, we review the role of chemical and biological molecules that are involved in the development, survival and differentiation of DA neurons. In particular, we review the chemical small molecules used to differentiate different type of stem cells into DA neurons with high efficiency; the role of microRNAs and long non-coding RNAs both in DA neurons development/survival as far as in the pathogenesis of PD; and, finally, we dissect the potential role of exosomes carrying biological molecules as treatment of PD.


Brain ◽  
2008 ◽  
Vol 131 (12) ◽  
pp. 3361-3379 ◽  
Author(s):  
A. Vinuela ◽  
P. J. Hallett ◽  
C. Reske-Nielsen ◽  
M. Patterson ◽  
T. D. Sotnikova ◽  
...  

2011 ◽  
Vol 2 (4) ◽  
pp. 198-206 ◽  
Author(s):  
Jeremy W. Chambers ◽  
Alok Pachori ◽  
Shannon Howard ◽  
Michelle Ganno ◽  
Donald Hansen ◽  
...  

2020 ◽  
Author(s):  
Shahan Mamoor

Parkinson’s Disease (PD) is characterized by loss of dopaminergic neurons in the substantia nigra of the basal ganglia (1). We mined published microarray datasets (2, 3) to identify genes whose expression was most different in the substantial nigra of patients with PD as compared to that of non-affected patients. We identified significant changes in expression of the gene encoding autophagin-3 (ATG4C) in the substantia nigra of patients with PD.


2020 ◽  
Author(s):  
Shahan Mamoor

Parkinson’s Disease (PD) is characterized by loss of dopaminergic neurons in the substantia nigra of the basal ganglia (1). We mined published and public microarray datasets (2, 3) to identify genes whose expression was most different in the substantial nigra of patients with PD as compared to that of non-affected patients. We identified significant changes in expression of the gene encoding the long intergenic non-coding RNA LINC00643 in the substantia nigra of patients with PD.


2020 ◽  
Author(s):  
Shahan Mamoor

Parkinson’s Disease (PD) is characterized by loss of dopaminergic neurons in the substantia nigra of the basal ganglia (1). We mined published and public microarray (2, 3) datasets to identify genes whose expression was most different in the brains of patients with PD as compared to that of non-affected patients. We identified significant changes in expression of the gene encoding the cyclin-dependent kinase CDK6 in the substantia nigra of patients with PD.


2020 ◽  
Author(s):  
Shahan Mamoor

Parkinson’s Disease (PD) is characterized by loss of dopaminergic neurons in the substantia nigra of the basal ganglia (1). We mined published and public microarray (2, 3) datasets to identify genes whose expression was most different in the brains of patients with PD as compared to that of non-affected patients. We identified significant changes in expression of the gene encoding the transcription factor ID2 in the substantia nigra of patients with PD.


2020 ◽  
Author(s):  
Shahan Mamoor

Parkinson’s Disease (PD) is characterized by loss of dopaminergic neurons in the substantia nigra of the basal ganglia (1). We mined published microarray datasets (2, 3) to identify genes whose expression was most different in the substantial nigra of patients with PD as compared to that of non-affected patients. We identified significant changes in expression of the gene encoding ANK1 in the substantia nigra of patients with PD.


2018 ◽  
Vol 115 (41) ◽  
pp. 10481-10486 ◽  
Author(s):  
Jordi Pujols ◽  
Samuel Peña-Díaz ◽  
Diana F. Lázaro ◽  
Francesca Peccati ◽  
Francisca Pinheiro ◽  
...  

Parkinson’s disease (PD) is characterized by a progressive loss of dopaminergic neurons, a process that current therapeutic approaches cannot prevent. In PD, the typical pathological hallmark is the accumulation of intracellular protein inclusions, known as Lewy bodies and Lewy neurites, which are mainly composed of α-synuclein. Here, we exploited a high-throughput screening methodology to identify a small molecule (SynuClean-D) able to inhibit α-synuclein aggregation. SynuClean-D significantly reduces the in vitro aggregation of wild-type α-synuclein and the familiar A30P and H50Q variants in a substoichiometric molar ratio. This compound prevents fibril propagation in protein-misfolding cyclic amplification assays and decreases the number of α-synuclein inclusions in human neuroglioma cells. Computational analysis suggests that SynuClean-D can bind to cavities in mature α-synuclein fibrils and, indeed, it displays a strong fibril disaggregation activity. The treatment with SynuClean-D of two PD Caenorhabditis elegans models, expressing α-synuclein either in muscle or in dopaminergic neurons, significantly reduces the toxicity exerted by α-synuclein. SynuClean-D–treated worms show decreased α-synuclein aggregation in muscle and a concomitant motility recovery. More importantly, this compound is able to rescue dopaminergic neurons from α-synuclein–induced degeneration. Overall, SynuClean-D appears to be a promising molecule for therapeutic intervention in Parkinson’s disease.


Sign in / Sign up

Export Citation Format

Share Document