scholarly journals Targeting MYCN-expressing triple-negative breast cancer with BET and MEK inhibitors

2020 ◽  
Vol 12 (534) ◽  
pp. eaaw8275 ◽  
Author(s):  
Johanna M. Schafer ◽  
Brian D. Lehmann ◽  
Paula I. Gonzalez-Ericsson ◽  
Clayton B. Marshall ◽  
J. Scott Beeler ◽  
...  

Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer that does not respond to endocrine therapy or human epidermal growth factor receptor 2 (HER2)–targeted therapies. Individuals with TNBC experience higher rates of relapse and shorter overall survival compared to patients with receptor-positive breast cancer subtypes. Preclinical discoveries are needed to identify, develop, and advance new drug targets to improve outcomes for patients with TNBC. Here, we report that MYCN, an oncogene typically overexpressed in tumors of the nervous system or with neuroendocrine features, is heterogeneously expressed within a substantial fraction of primary and recurrent TNBC and is expressed in an even higher fraction of TNBCs that do not display a pathological complete response after neoadjuvant chemotherapy. We performed high-throughput chemical screens on TNBC cell lines with varying amounts of MYCN expression and determined that cells with higher expression of MYCN were more sensitive to bromodomain and extraterminal motif (BET) inhibitors. Combined BET and MEK inhibition resulted in a synergistic decrease in viability, both in vitro and in vivo, using cell lines and patient-derived xenograft (PDX) models. Our preclinical data provide a rationale to advance a combination of BET and MEK inhibitors to clinical investigation for patients with advanced MYCN-expressing TNBC.

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Giada Zurlo ◽  
Xijuan Liu ◽  
Mamoru Takada ◽  
Cheng Fan ◽  
Jeremy M. Simon ◽  
...  

AbstractProtein hydroxylation affects protein stability, activity, and interactome, therefore contributing to various diseases including cancers. However, the transiency of the hydroxylation reaction hinders the identification of hydroxylase substrates. By developing an enzyme-substrate trapping strategy coupled with TAP-TAG or orthogonal GST- purification followed by mass spectrometry, we identify adenylosuccinate lyase (ADSL) as an EglN2 hydroxylase substrate in triple negative breast cancer (TNBC). ADSL expression is higher in TNBC than other breast cancer subtypes or normal breast tissues. ADSL knockout impairs TNBC cell proliferation and invasiveness in vitro and in vivo. An integrated transcriptomics and metabolomics analysis reveals that ADSL activates the oncogenic cMYC pathway by regulating cMYC protein level via a mechanism requiring ADSL proline 24 hydroxylation. Hydroxylation-proficient ADSL, by affecting adenosine levels, represses the expression of the long non-coding RNA MIR22HG, thus upregulating cMYC protein level. Our findings highlight the role of ADSL hydroxylation in controlling cMYC and TNBC tumorigenesis.


SpringerPlus ◽  
2014 ◽  
Vol 3 (1) ◽  
pp. 417 ◽  
Author(s):  
Masato Terashima ◽  
Kazuko Sakai ◽  
Yosuke Togashi ◽  
Hidetoshi Hayashi ◽  
Marco A De Velasco ◽  
...  

2021 ◽  
Author(s):  
Qiu Jin ◽  
Bo Lin ◽  
Wenhui Zhao ◽  
Runyuan Ji

Abstract BackgroundMany studies indicate that microRNAs (miRNAs) play a crucial role in modulating the development and progression of triple-negative breast cancer (TNBC). However, miR-664b-3p affections on the TNBC functions and mechanisms are still unknown. The purpose of our study was to clarify the effects of miR-664b-3p in cellular TNBC development and progression.MethodsIn our study, the expressions of miR-664b-3p in cell lines and tissueswere tested by real-time PCR (RT-PCR), immunofluorescence, H&E and immunohistochemistry staining. CCK-8 assay, colony formation, EdU, flow cytometry apoptosis, wound scratch, Transwell assays were applied to explore the cell functions. The targeted relationship between miR-664b-3p and its target BRIP1 was determined by dual-luciferase reporter assay and rescue experiments. ResultsWe observed that miR-664b-3p was significantly decreased in TNBC cell lines. Overexpression of miR-664b-3p could observably inhibit cell proliferation, migration, invasion and induced apoptosis in vitro. Meanwhile, miR-664-3p suppressed TNBC tumor growth in vivo. Furthermore, luciferase reporter assays identified the interaction between 3’UTR of BRIP1 and miR-664b-3p. Moreover, we investigated the mechanisms underlying the effect of miR-664b-3p on cell functions, and the result showed that miR-664b-3p inhibited cell proliferation, invasion and accelerated apoptosis by targeting BRIP1.ConclusionFrom the above, our findings indicated that miR-664b-3p played a significant role in TNBC progression by targeting BRIP1, providing new therapeutic targets for diagnostic in TNBC.


2021 ◽  
Vol 10 ◽  
Author(s):  
Hiu Yee Kwan ◽  
Qinghua Xu ◽  
Ruihong Gong ◽  
Zhaoxiang Bian ◽  
Chih-Chang Chu

Triple negative breast cancer (TNBC) has the worst overall survival among all breast cancer subtypes; 80% of TNBC harbors TP53 mutation. Gambogic acid (GA) is an herbal compound isolated from the dry brownish gamboge resin of Garcinia hanburyi. A new family of biodegradable polymer, the folate (FA)-conjugated arginine-based poly(ester urea urethane)s nanoparticles (FA-Arg-PEUU NP), was developed as nano-carrier for GA. Its anti-TNBC effects and the underlying mechanism of action were examined. The average diameters of FA-Arg-PEUU NP and GA-loaded FA-Arg-PEUU NP (NP-GA) in water are around 165 and 220nm, respectively. Rhodamine-tagged FA-Arg-PEUU NP shows that the conjugation of FA onto Arg-PEUU NPs facilitates the internalization of FA-Arg-PEUU-NP into TNBC. Compared to free-GA at the same GA concentrations, NP-GA exhibits higher cytotoxicity in both TP53-mutated and non-TP53 expressed TNBC cells by increasing intrinsic and extrinsic apoptosis. In HCC1806-bearing xenograft mouse model, the targeted delivery of GA by the FA-Arg-PEUU-NP nano-carriers to the tumor sites results in a more potent anti-TNBC effect and lower toxicity towards normal tissues and organs when compared to free GA. Furthermore, NP-GA also reduces the tumor-associated macrophage (TAM) M1/M2 ratio, suggesting that the use of Arg-based nanoparticles as carriers for GA not only makes the surface of the nanoparticles positively charged, but also confers on to the nanoparticles an ability to modulate TAM polarization. Our data clearly demonstrate that NP-GA exhibits potent anti-TNBC effects with reduced off-target toxicity, which represents novel alternative targeted therapeutics for TNBC treatment.


2021 ◽  
Vol 11 ◽  
Author(s):  
Juanjuan He ◽  
Jing Wang ◽  
Teng Li ◽  
Kunlun Chen ◽  
Songchao Li ◽  
...  

BackgroundTriple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer owing to a lack of effective targeted therapy and acquired chemoresistance. Here, we explored the function and mechanism of shank-interacting protein-like 1 (SIPL1) in TNBC progression.MethodsSIPL1 expression was examined in human TNBC tissues and cell lines by quantitative reverse transcription PCR, western blot, and immunohistochemistry. SIPL1 overexpression and silenced cell lines were established in BT-549 and MDA-MB-231 cells. The biological functions of SIPL1 in TNBC were studied in vitro using the CCK-8 assay, CellTiter-Glo Luminescent Cell Viability assay, caspase-3/8/9 assay, wound healing assay, and transwell assay and in vivo using a nude mouse model. The potential mechanisms underlying the effects of SIPL1 on TNBC progression were explored using bioinformatics analysis, luciferase reporter assays, and chromatin immunoprecipitation followed by qPCR.ResultsSIPL1 expression was higher in human TNBC tissues and cell lines than in adjacent normal tissues and a breast epithelial cell line (MCF10A). High expression of SIPL1 was positively correlated with poor overall and disease-free survival in patients with TNBC. SIPL1 overexpression elevated and SIPL1 silencing repressed the malignant phenotypes of TNBC cells in vitro. SIPL1 overexpression promoted xenograft tumor growth in vivo. Myc-associated zinc-finger protein (MAZ) transcriptionally activated SIPL1. Finally, we found that SIPL1 promoted TNBC malignant phenotypes via activation of the AKT/NF-κB signaling pathways.ConclusionsThese results indicate that the MAZ/SIPL1/AKT/NF-κB axis plays a crucial role in promoting the malignant phenotypes of TNBC cells.


Author(s):  
Xiuzhi Zhu ◽  
Li Chen ◽  
Binhao Huang ◽  
Xiaoguang Li ◽  
Liu Yang ◽  
...  

Abstract Background PARP inhibitors (PARPi) benefit only a fraction of breast cancer patients with BRCA mutations, and their efficacy is even more limited in triple-negative breast cancer (TNBC) due to clinical primary and acquired resistance. Here, we found that the efficacy of the PARPi olaparib in TNBC can be improved by combination with the CDK4/6 inhibitor (CDK4/6i) palbociclib. Methods We screened primary olaparib-sensitive and olaparib-resistant cell lines from existing BRCAmut/TNBC cell lines and generated cells with acquired olaparib resistance by gradually increasing the concentration. The effects of the PARPi olaparib and the CDK4/6i palbociclib on BRCAmut/TNBC cell lines were examined in both sensitive and resistant cells in vitro and in vivo. Pathway and gene alterations were assessed mechanistically and pharmacologically. Results We demonstrated for the first time that the combination of olaparib and palbociclib has synergistic effects against BRCAmut/TNBC both in vitro and in vivo. In olaparib-sensitive MDA-MB-436 cells, the single agent olaparib significantly inhibited cell viability and affected cell growth due to severe DNA damage. In olaparib-resistant HCC1937 and SUM149 cells, single-agent olaparib was ineffective due to potential homologous recombination (HR) repair, and the combination of olaparib and palbociclib greatly inhibited HR during the G2 phase, increased DNA damage and inhibited tumour growth. Inadequate DNA damage caused by olaparib activated the Wnt signalling pathway and upregulated MYC. Further experiments indicated that the overexpression of β-catenin, especially its hyperphosphorylation at the Ser675 site, activated the Wnt signalling pathway and mediated olaparib resistance, which could be strongly inhibited by combined treatment with palbociclib. Conclusions Our data provide a rationale for clinical evaluation of the therapeutic synergy of the PARPi olaparib and CDK4/6i palbociclib in BRCAmut/TNBCs with high Wnt signalling activation and high MYC expression that do not respond to PARPi monotherapy.


BMC Cancer ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Maria Barton ◽  
Julia Santucci-Pereira ◽  
Olivia G. Vaccaro ◽  
Theresa Nguyen ◽  
Yanrong Su ◽  
...  

Abstract Background Long non coding RNAs (lncRNAs) are RNA molecules longer than 200 nucleotides that are not translated into proteins, but regulate the transcription of genes involved in different cellular processes, including cancer. Epidemiological analyses have demonstrated that parous women have a decreased risk of developing breast cancer in postmenopausal years if they went through a full term pregnancy in their early twenties. We here provide evidence of the role of BC200 in breast cancer and, potentially, in pregnancy’s preventive effect in reducing the lifetime risk of developing breast cancer. Methods Transcriptome analysis of normal breast of parous and nulliparous postmenopausal women revealed that several lncRNAs are differentially expressed in the parous breast. RNA sequencing of healthy postmenopausal breast tissue biopsies from eight parous and eight nulliparous women showed that there are 42 novel lncRNAs differentially expressed between these two groups. Screening of several of these 42 lncRNAs by RT-qPCR in different breast cancer cell lines, provided evidence that one in particular, lncEPCAM (more commonly known as BC200), was a strong candidate involved in cancer progression. Proliferation, migration, invasion and xerograph studies confirmed this hypothesis. Results The poorly studied oncogenic BC200 was selected to be tested in vitro and in vivo to determine its relevance in breast cancer and also to provide us with an understanding of its role in the increased susceptibility of the nulliparous women to cancer. Our results show that BC200 is upregulated in nulliparous women, and breast cancer cells and tissue. The role of BC200 is not completely understood in any of the breast cancer subtypes. We here provide evidence that BC200 has a role in luminal breast cancer as well as in the triple negative breast cancer subtype. Conclusion When overexpressed in luminal and triple negative breast cancer cell lines, BC200 shows increased proliferation, migration, and invasion in vitro. In vivo, overexpression of BC200 increased tumor size. Although treatment for cancer using lncRNAs as targets is in its infancy, the advancement in knowledge and technology to study their relevance in disease could lead to the development of novel treatment and preventive strategies for breast cancer.


2021 ◽  
Author(s):  
Yang Gao ◽  
Elena B Kabotyanski ◽  
Elizabeth Villegas ◽  
Jonathan H. Shepherd ◽  
Deanna Acosta ◽  
...  

Polo-like kinase (PLK) family members play important roles in cell cycle regulation. The founding member PLK1 is oncogenic and preclinically validated as a cancer therapeutic target. Paradoxically, PLK2 (chromosome 5q11.2) is frequently deleted in human breast cancers, preferentially in basal-like and triple-negative breast cancer subtypes. Here, we found that PLK2 was tumor suppressive in breast cancer and knockdown of PLK1 rescued phenotypes induced by PLK2-loss both in vitro and in vivo. We also demonstrated that PLK2 directly interacted with PLK1 at prometaphase and that mutations in the kinase domain of PLK2, but not polo-box binding domains, changed their interaction pattern. Furthermore, treatment of syngeneic transplantation mouse tumor models and patient-derived xenografts using the PLK1 inhibitor volasertib alone, or in combination with carboplatin, indicated that PLK2-low breast tumors had a significantly better response to these drugs. Re-expression of PLK2 in an inducible PLK2-null mouse model reduced the therapeutic efficacy of volasertib. Taken together, our data suggest PLK2 loss may serve as a biomarker to predict response to PLK1 therapeutics, alone and in combination with chemotherapy.


2019 ◽  
Vol 30 ◽  
pp. v99
Author(s):  
C. Nieto-Jiménez ◽  
E.M. Galán-Moya ◽  
V. Corrales-Sanchez ◽  
M.D.M. Noblejas López ◽  
M. Burgos ◽  
...  

2021 ◽  
Vol 9 (7) ◽  
pp. e002383
Author(s):  
Jin-Li Wei ◽  
Si-Yu Wu ◽  
Yun-Song Yang ◽  
Yi Xiao ◽  
Xi Jin ◽  
...  

PurposeRegulatory T cells (Tregs) heavily infiltrate triple-negative breast cancer (TNBC), and their accumulation is affected by the metabolic reprogramming in cancer cells. In the present study, we sought to identify cancer cell-intrinsic metabolic modulators correlating with Tregs infiltration in TNBC.Experimental designUsing the RNA-sequencing data from our institute (n=360) and the Molecular Taxonomy of Breast Cancer International Consortium TNBC cohort (n=320), we calculated the abundance of Tregs in each sample and evaluated the correlation between gene expression levels and Tregs infiltration. Then, in vivo and in vitro experiments were performed to verify the correlation and explore the underlying mechanism.ResultsWe revealed that GTP cyclohydrolase 1 (GCH1) expression was positively correlated with Tregs infiltration and high GCH1 expression was associated with reduced overall survival in TNBC. In vivo and in vitro experiments showed that GCH1 increased Tregs infiltration, decreased apoptosis, and elevated the programmed cell death-1 (PD-1)-positive fraction. Metabolomics analysis indicated that GCH1 overexpression reprogrammed tryptophan metabolism, resulting in L-5-hydroxytryptophan (5-HTP) accumulation in the cytoplasm accompanied by kynurenine accumulation and tryptophan reduction in the supernatant. Subsequently, aryl hydrocarbon receptor, activated by 5-HTP, bound to the promoter of indoleamine 2,3-dioxygenase 1 (IDO1) and thus enhanced the transcription of IDO1. Furthermore, the inhibition of GCH1 by 2,4-diamino-6-hydroxypyrimidine (DAHP) decreased IDO1 expression, attenuated tumor growth, and enhanced the tumor response to PD-1 blockade immunotherapy.ConclusionsTumor-cell-intrinsic GCH1 induced immunosuppression through metabolic reprogramming and IDO1 upregulation in TNBC. Inhibition of GCH1 by DAHP serves as a potential immunometabolic strategy in TNBC.


Sign in / Sign up

Export Citation Format

Share Document