The portable university model of the atmosphere (PUMA): Storm track dynamics and low-frequency variability

2005 ◽  
Vol 14 (6) ◽  
pp. 735-745 ◽  
Author(s):  
Klaus Fraedrich ◽  
Edilbert Kirk ◽  
Ute Luksch ◽  
Frank Lunkeit
2014 ◽  
Vol 71 (7) ◽  
pp. 2281-2298 ◽  
Author(s):  
Hong-Li Ren ◽  
Fei-Fei Jin ◽  
Jong-Seong Kug

Abstract Synoptic eddy and low-frequency flow (SELF) feedback plays an important role in reinforcing low-frequency variability (LFV). Recent studies showed that an eddy-induced growth (EIG) or instability makes a fundamental contribution to the maintenance of LFV. To quantify the efficiency of the SELF feedback, this study examines the spatiotemporal features of the empirical diagnostics of EIG and its associations with LFV. The results show that, in terms of eddy vorticity forcing, the EIG rate of LFV is generally larger (smaller) in the upper (lower) troposphere, whereas, in terms of eddy potential vorticity forcing, it is larger in the lower troposphere to partly balance the damping effect of surface friction. The local EIG rate shows a horizontal spatial distribution that corresponds to storm-track activity, which tends to be responsible for maintaining LFV amplitudes and patterns as well as sustaining eddy-driven jets. In fact, the EIG rate has a well-defined seasonality, being generally larger in cold seasons and smaller in the warmest season, and this seasonality is stronger in the Northern Hemisphere than in the Southern Hemisphere. This study also reveals a mid- to late winter (January–March) suppression of the EIG rate in the Northern Hemisphere, which indicates a reduced eddy feedback efficiency and may be largely attributed to the eddy kinetic energy suppression and the midlatitude zonal wind maximum in the midwinter of the Northern Hemisphere.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Satoru Okajima ◽  
Hisashi Nakamura ◽  
Yohai Kaspi

AbstractMigratory cyclones and anticyclones account for most of the day-to-day weather variability in the extratropics. These transient eddies act to maintain the midlatitude jet streams by systematically transporting westerly momentum and heat. Yet, little is known about the separate contributions of cyclones and anticyclones to their interaction with the westerlies. Here, using a novel methodology for identifying cyclonic and anticyclonic vortices based on curvature, we quantify their separate contributions to atmospheric energetics and their feedback on the westerly jet streams as represented in Eulerian statistics. We show that climatological westerly acceleration by cyclonic vortices acts to dominantly reinforce the wintertime eddy-driven near-surface westerlies and associated cyclonic shear. Though less baroclinic and energetic, anticyclones still play an important role in transporting westerly momentum toward midlatitudes from the upper-tropospheric thermally driven jet core and carrying eddy energy downstream. These new findings have uncovered essential characteristics of atmospheric energetics, storm track dynamics and eddy-mean flow interaction.


Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 2058 ◽  
Author(s):  
Larissa Rolim ◽  
Francisco de Souza Filho

Improved water resource management relies on accurate analyses of the past dynamics of hydrological variables. The presence of low-frequency structures in hydrologic time series is an important feature. It can modify the probability of extreme events occurring in different time scales, which makes the risk associated with extreme events dynamic, changing from one decade to another. This article proposes a methodology capable of dynamically detecting and predicting low-frequency streamflow (16–32 years), which presented significance in the wavelet power spectrum. The Standardized Runoff Index (SRI), the Pruned Exact Linear Time (PELT) algorithm, the breaks for additive seasonal and trend (BFAST) method, and the hidden Markov model (HMM) were used to identify the shifts in low frequency. The HMM was also used to forecast the low frequency. As part of the results, the regime shifts detected by the BFAST approach are not entirely consistent with results from the other methods. A common shift occurs in the mid-1980s and can be attributed to the construction of the reservoir. Climate variability modulates the streamflow low-frequency variability, and anthropogenic activities and climate change can modify this modulation. The identification of shifts reveals the impact of low frequency in the streamflow time series, showing that the low-frequency variability conditions the flows of a given year.


2008 ◽  
Vol 21 (9) ◽  
pp. 1948-1962 ◽  
Author(s):  
R. Garcia-Herrera ◽  
D. Barriopedro ◽  
E. Hernández ◽  
H. F. Diaz ◽  
R. R. Garcia ◽  
...  

Abstract The authors present a chronology of El Niño (EN) events based on documentary records from northern Peru. The chronology, which covers the period 1550–1900, is constructed mainly from primary sources from the city of Trujillo (Peru), the Archivo General de Indias in Seville (Spain), and the Archivo General de la Nación in Lima (Peru), supplemented by a reassessment of documentary evidence included in previously published literature. The archive in Trujillo has never been systematically evaluated for information related to the occurrence of El Niño–Southern Oscillation (ENSO). Abundant rainfall and river discharge correlate well with EN events in the area around Trujillo, which is very dry during most other years. Thus, rain and flooding descriptors, together with reports of failure of the local fishery, are the main indicators of EN occurrence that the authors have searched for in the documents. A total of 59 EN years are identified in this work. This chronology is compared with the two main previous documentary EN chronologies and with ENSO indicators derived from proxy data other than documentary sources. Overall, the seventeenth century appears to be the least active EN period, while the 1620s, 1720s, 1810s, and 1870s are the most active decades. The results herein reveal long-term fluctuations in warm ENSO activity that compare reasonably well with low-frequency variability deduced from other proxy data.


2013 ◽  
Vol 30 (2) ◽  
pp. 353-360 ◽  
Author(s):  
Rick Lumpkin ◽  
Semyon A. Grodsky ◽  
Luca Centurioni ◽  
Marie-Helene Rio ◽  
James A. Carton ◽  
...  

Abstract Satellite-tracked drifting buoys of the Global Drifter Program have drogues, centered at 15-m depth, to minimize direct wind forcing and Stokes drift. Drogue presence has historically been determined from submergence or tether strain records. However, recent studies have revealed that a significant fraction of drifters believed to be drogued have actually lost their drogues, a problem that peaked in the mid-2000s before the majority of drifters in the global array switched from submergence to tether strain sensors. In this study, a methodology is applied to the data to automatically reanalyze drogue presence based on anomalous downwind ageostrophic motion. Results indicate that the downwind slip of undrogued drifters is approximately 50% higher than previously believed. The reanalyzed results no longer exhibit the dramatic and spurious interannual variations seen in the original data. These results, along with information from submergence/tether strain and transmission frequency variations, are now being used to conduct a systematic manual reevaluation of drogue presence for each drifter in the post-1992 dataset.


Sign in / Sign up

Export Citation Format

Share Document