Deep geothermal energy potential of Carboniferous carbonate rocks in North-West Europe: The DGE-ROLLOUT project ‒ History, characterisation, modelling and exploration

Author(s):  
Martin Arndt ◽  
Tobias Fritschle ◽  
Anna Thiel ◽  
Martin Salamon
2020 ◽  
Author(s):  
Tobias Fritschle ◽  
Martin Salamon ◽  
Silke Bißmann ◽  
Martin Arndt ◽  
Thomas Oswald

<p>Devonian and Carboniferous carbonate rocks are present in the subsurface of the Weisweiler lignite-fired power plant near Aachen, Germany. The utilisation of these rocks for deep geothermal energy extraction is currently being explored within the scope of the transnational EU-INTERREG-funded “Roll-out of Deep Geothermal Energy in North-West Europe (DGE-ROLLOUT)” project, which aims to provide solutions to reduce carbon-dioxide emissions using a variety of geoscientific approaches.</p><p>Marine transgressive-regressive cycles during mid-Palaeozoic times enabled the formation of extensive reef complexes on the southerly continental shelf of the Laurussian palaeocontinent. Supported by favourable climatic conditions including warm, clear and shallow waters, the Givetian to Frasnian Massenkalk facies and the Dinantian Kohlenkalk Group, each several hundred meters thick, were deposited in North-West Europe.</p><p>In the Weisweiler area, these Palaeozoic carbonate rocks were covered by voluminous paralic sedimentary rocks and deformed to large-scale, generally northeast-southwest-trending, syncline-anticline structures during the Variscan Orogeny. Alpine (post-)orogenic processes further induced faulting, resulting in fault-block tectonics in the Lower Rhine Embayment area of tectonic subsidence. Significant multiphase karstification of the Palaeozoic carbonate rocks, which can be observed in nearby exposed counterparts, supports their enhanced geothermal exploitation potential.</p><p>3D-modelling of the depths and dimensions of the Weisweiler subsurface carbonate reservoirs is carried out using the commercial software Move [v2019.1.0; Petroleum Experts Ltd], and is constrained by lithostratigraphic data obtained from drilling operations, geological mapping, and interpretation of seismic profiles. The 3D-model exhibits a complex geotectonic environment, including the development of both parasitic folds and thrust faults prior to the generation of Tertiary fault-block tectonics. The depths of the tops of the reservoirs are estimated to c. 1,200 m for the Carboniferous and to c. 2,000 m for the Devonian carbonate rocks, taking into account typical thicknesses of the overlying and underlying strata. Considering possible tectonic repetition below the thrust faults, the reservoir rocks may also occur significantly deeper in the subsurface. The 3D-model is currently being transformed into a HeatFlow3D [DMT GmbH & Co. KG] / Petrel [v2017; Schlumberger N.V.] model in order to approximate the fluid circulation and pathways within the carbonate reservoirs.</p><p>Based on the current model, a target area for 2D-seismic surveys and a c. 1,000 to 1,500 m deep exploration borehole have been selected. These investigations will commence in the summer of 2020, and will then enable geochemical and petrophysical investigations of the Palaeozoic rocks. The possibility of deep geothermal energy extraction from the Weisweiler subsurface and subsequent evaluation of the transition of the conventional lignite-fired power plant towards its utilisation of renewable “green” energy is carried out in close collaboration with DMT GmbH & Co. KG, Fraunhofer Institute for Energy Infrastructures and Geothermal Energy and RWE Power AG, all partners within the DGE-ROLLOUT project. The successful realisation of this project may serve as a pilot for similar projects considering the forthcoming fossil fuel phase-out.</p>


2021 ◽  
Vol 11 (6) ◽  
pp. 2691
Author(s):  
Nataša Ćuković Ignjatović ◽  
Ana Vranješ ◽  
Dušan Ignjatović ◽  
Dejan Milenić ◽  
Olivera Krunić

The study presented in this paper assessed the multidisciplinary approach of geothermal potential in the area of the most southeastern part of the Pannonian basin, focused on resources utilization. This study aims to present a method for the cascade use of geothermal energy as a source of thermal energy for space heating and cooling and as a resource for balneological purposes. Two particular sites were selected—one in a natural environment; the other within a small settlement. Geothermal resources come from different types of reservoirs having different temperatures and chemical compositions. At the first site, a geothermal spring with a temperature of 20.5 °C is considered for heat pump utilization, while at the second site, a geothermal well with a temperature of 54 °C is suitable for direct use. The calculated thermal power, which can be obtained from geothermal energy is in the range of 300 to 950 kW. The development concept was proposed with an architectural design to enable sustainable energy efficient development of wellness and spa/medical facilities that can be supported by local authorities. The resulting energy heating needs for different scenarios were 16–105 kW, which can be met in full by the use of geothermal energy.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 706
Author(s):  
Jacek Majorowicz ◽  
Stephen E. Grasby

We summarize the feasibility of using geothermal energy from the Western Canada Sedimentary Basin (WCSB) to support communities with populations >3000 people, including those in northeastern British Columbia, southwestern part of Northwest Territories (NWT), southern Saskatchewan, and southeastern Manitoba, along with previously studied communities in Alberta. The geothermal energy potential of the WCSB is largely determined by the basin’s geometry; the sediments start at 0 m thickness adjacent to the Canadian shield in the east and thicken to >6 km to the west, and over 3 km in the Williston sub-basin to the south. Direct heat use is most promising in the western and southern parts of the WCSB where sediment thickness exceeds 2–3 km. Geothermal potential is also dependent on the local geothermal gradient. Aquifers suitable for heating systems occur in western-northwestern Alberta, northeastern British Columbia, and southwestern Saskatchewan. Electrical power production is limited to the deepest parts of the WCSB, where aquifers >120 °C and fluid production rates >80 kg/s occur (southwestern Northwest Territories, northwestern Alberta, northeastern British Columbia, and southeastern Saskatchewan. For the western regions with the thickest sediments, the foreland basin east of the Rocky Mountains, estimates indicate that geothermal power up to 2 MWel. (electrical), and up to 10 times higher for heating in MWth. (thermal), are possible.


2021 ◽  
Author(s):  
Maxime Catinat ◽  
Benjamin Brigaud ◽  
Marc Fleury ◽  
Miklos Antics ◽  
Pierre Ungemach ◽  
...  

<p>With around 50 heating networks today operating, the aera around Paris is the European region which concentrates the most heating network production units in terms of deep geothermal energy. In France, the energy-climate strategy plans to produce 6.4TWh in 2023, compared to 1.5TWh produced in 2016. Despite an exceptional geothermal potential, the current average development rate of 70MWh/year will not allow this objective to be achieved, it would be necessary to reach a rate of 6 to 10 times higher. The optimization of the use of deep geothermal energy is a major challenge for France, and in Ile-de-France, which has a population of nearly 12 million inhabitants. This project aims to reconstruct and simulate heat flows in the Paris Basin using an innovative methodology (1) to characterize, predict and model the properties of reservoirs (facies, porosity, permeability) and (2) simulate future circulations and predict the performance at a given location (sedimentary basin) on its geothermal potential. This study focuses on a high density area of well infrastructures around Cachan, (8 doublets, 1 triplet in 56 km<sup>2</sup>). A new sub-horizontal doublet concept has been recently (2017) drilled at Cachan to enhance heat exchange in medium to low permeability formations. Nuclear Magnetic Resonance (NMR T2) logs have been recorded in the sub-horizontal well (GCAH2) providing information on pore size distribution and permeability. We integrated all logging data (gamma ray, density, resistivity, sonic, NRM T2) of the 19 wells in the area and 120 thin section observations from cuttings to derive a combined electrofacies-sedimentary facies description. A total of 10 facies is grouped into 5 facies associations coded in all the 19 wells according to depths and 10 3rd order stratigraphic sequences are recognized. The cell size of the 3D grid was set to 50 m x 50 m for the XY dimensions. The Z-size depends on the thickness of the sub-zones, averaging 5 m. The resulting 3D grid is composed of a total of nearly 8.10<sup>5</sup>cells. After upscaled, facies and stratigraphic surfaces are used to create a reliable model using the “Truncated Gaussian With Trends” algorithm. The petrophysical distribution “Gaussian Random Function Simulation” is used to populate the entire grid with properties, included 2000 NMR data, considering each facies independently. The best reservoir is mainly located in the shoal deposits oolitic grainstones with average porosity of 12.5% and permeability of 100 mD. Finally, hydrodynamic and thermal simulations have been performed using Pumaflow to give information on the potential risk of interference between the doublets in the area and advices are given in the well trajectory to optimize the connectivity and the lifetime of the system. NMR data, especially permeability, allow to greater improve the simulations, defining time probabilities of thermal breakthrough in an area of high density wells.</p>


2016 ◽  
pp. 53-56
Author(s):  
J Frankovská ◽  
M Ondrášik ◽  
Ch Källberg

2020 ◽  
Author(s):  
Hernando Enrique Rodriguez Pantano ◽  
Valentina Betancourt ◽  
Juan S. Solís-Chaves ◽  
C. M. Rocha-Osorio

Colombian geothermal potential for power generation is interesting due to the presence of the three Andean mountain ranges and the existence of active volcanoes in junction with springs and underground reservoirs with the consequent closeness of available hydrothermal water-wells. The Machin volcano is a small mountain placed in the middle of the country, that has a considerable geothermal potential with wells in a temperature range of 160 to 260C. For that reason, a techno-economic simulation for a Geothermal Energy Generation System is proposed in this paper, using for that the System Advisor Model software. The purpose of this research is to present a more encouraging picture for public and private investors interested in exploiting this energy potential in Colombia. Simulation results include technical and economic aspects as annual and monthly energy production, geothermal resource monthly average temperature, and the Time Of Delivery Factors are also considered. Some tables with system configuration, plant and pump costs, Capacity Factor, and real and nominal Levelized Cost of Energy are also shown.


Sign in / Sign up

Export Citation Format

Share Document