The Role of Viral Genetic Variability in HIV-Associated Neurocognitive Disorder

Author(s):  
Paul Shapshak ◽  
Alireza Minagar ◽  
Pandjassarame Kangueane ◽  
Simon Frost ◽  
Sergei L. Kosakovsky Pond ◽  
...  
2010 ◽  
Vol 3 ◽  
pp. IJTR.S4321 ◽  
Author(s):  
Nicholas W.S. Davies ◽  
Gilles Guillemin ◽  
Bruce J. Brew

This review presents an up-to-date assessment of the role of the tryptophan metabolic and catabolic pathways in neurodegenerative disease and HIV-associated neurocognitive disorder. The kynurenine pathway and the effects of each of its enzymes and products are reviewed. The differential expression of the kynurenine pathway in cells within the brain, including inflammatory cells, is explored given the increasing recognition of the importance of inflammation in neurodegenerative disease. An overview of common mechanisms of neurodegeneration is presented before a review and discussion of the evidence for a pathogenetic role of the kynurenine pathway in Alzheimer's disease, HIV-associated neurocognitive disorder, Huntington's disease, motor neurone disease, and Parkinson's disease.


2018 ◽  
Vol 19 (11) ◽  
pp. 3594 ◽  
Author(s):  
Ian Olivier ◽  
Ramón Cacabelos ◽  
Vinogran Naidoo

Neurocognitive impairments associated with human immunodeficiency virus (HIV) infection remain a considerable health issue for almost half the people living with HIV, despite progress in HIV treatment through combination antiretroviral therapy (cART). The pathogenesis and risk factors of HIV-associated neurocognitive disorder (HAND) are still incompletely understood. This is partly due to the complexity of HAND diagnostics, as phenotypes present with high variability and change over time. Our current understanding is that HIV enters the central nervous system (CNS) during infection, persisting and replicating in resident immune and supporting cells, with the subsequent host immune response and inflammation likely adding to the development of HAND. Differences in host (human) genetics determine, in part, the effectiveness of the immune response and other factors that increase the vulnerability to HAND. This review describes findings from studies investigating the role of human host genetics in the pathogenesis of HAND, including potential risk factors for developing HAND. The similarities and differences between HAND and Alzheimer’s disease are also discussed. While some specific variations in host genes regulating immune responses and neurotransmission have been associated with protection or risk of HAND development, the effects are generally small and findings poorly replicated. Nevertheless, a few specific gene variants appear to affect the risk for developing HAND and aid our understanding of HAND pathogenesis.


2013 ◽  
Vol 19 (6) ◽  
pp. 601-605 ◽  
Author(s):  
Beau K. Nakamoto ◽  
Cecilia M. Shikuma ◽  
Debra Ogata-Arakaki ◽  
Tracie Umaki ◽  
Edward A. Neuwelt ◽  
...  

Neurology ◽  
2012 ◽  
Vol 78 (7) ◽  
pp. 485-492 ◽  
Author(s):  
J. A. McCutchan ◽  
J. A. Marquie-Beck ◽  
C. A. FitzSimons ◽  
S. L. Letendre ◽  
R. J. Ellis ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Yuan-jun Liao ◽  
Jian-min Chen ◽  
Jiang-yi Long ◽  
Yi-jun Zhou ◽  
Bing-yu Liang ◽  
...  

Chemokine CC motif ligand 2 (CCL2) is one of the most recognized proinflammatory chemokines, and the expression of CCL2 in the cerebrospinal fluid of patients infected with HIV-1 is significantly higher than that of healthy people. As such, it is seen as an important cause of HIV-associated neurocognitive disorder (HAND). Our previous investigation has confirmed the pathological role of CCL2 in mediating brain damage leading to cognitive dysfunction. Currently, however, research on therapeutic drugs for the central nervous system targeting CCL2 is very limited. Our present study used brain stereotactic technology to induce cognitive impairment in rats by injecting CCL2 (5 ng) into the bilateral hippocampus. To investigate the protective effect and mechanism of Tanshinone IIA (25, 50, 75 mg/kg/d) on CCL2-induced learning memory and cognitive impairment in rats, we performed the Morris water maze (MWM) and novel object recognition tests (NORT) on the rats. The results showed that Tanshinone IIA significantly alleviated CCL2-induced learning memory and cognitive dysfunction. Further studies on the hippocampal tissue of the rats revealed that Tanshinone IIA treatment significantly increased the activity of SOD and GSH-Px while the level of MDA decreased compared to the model group. Additionally, the relative expression of apoptosis-associated genes caspase-3, caspase-8, and caspase-9 and inflammation-associated genes IL-1β and IL-6 in Tanshinone IIA-treated rats was lower than that in model rats. Finally, we confirmed hippocampal neuron loss and apoptosis by Nissl staining and TdT-mediated dUTP Nick end labeling (TUNEL). Taken together, these data imply that Tanshinone IIA can ameliorate CCL2-induced learning memory and cognitive impairment by impacting oxidative stress, inflammation, and apoptosis. Tanshinone IIA may be a potential therapeutic agent for the treatment of HAND.


2014 ◽  
Vol 7 (1) ◽  
pp. 37 ◽  
Author(s):  
Venkata Subba Atluri ◽  
Sudheesh Pilakka-Kanthikeel ◽  
Thangavel Samikkannu ◽  
Vidya Sagar ◽  
Kesava Rao Kurapati ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Joseph Bryant ◽  
Sanketh Andhavarapu ◽  
Christopher Bever ◽  
Poornachander Guda ◽  
Akhil Katuri ◽  
...  

AbstractThe combined antiretroviral therapy era has significantly increased the lifespan of people with HIV (PWH), turning a fatal disease to a chronic one. However, this lower but persistent level of HIV infection increases the susceptibility of HIV-associated neurocognitive disorder (HAND). Therefore, research is currently seeking improved treatment for this complication of HIV. In PWH, low levels of brain derived neurotrophic factor (BDNF) has been associated with worse neurocognitive impairment. Hence, BDNF administration has been gaining relevance as a possible adjunct therapy for HAND. However, systemic administration of BDNF is impractical because of poor pharmacological profile. Therefore, we investigated the neuroprotective effects of BDNF-mimicking 7,8 dihydroxyflavone (DHF), a bioactive high-affinity TrkB agonist, in the memory-involved hippocampus and brain cortex of Tg26 mice, a murine model for HAND. In these brain regions, we observed astrogliosis, increased expression of chemokine HIV-1 coreceptors CXCR4 and CCR5, neuroinflammation, and mitochondrial damage. Hippocampi and cortices of DHF treated mice exhibited a reversal of these pathological changes, suggesting the therapeutic potential of DHF in HAND. Moreover, our data indicates that DHF increases the phosphorylation of TrkB, providing new insights about the role of the TrkB–Akt–NFkB signaling pathway in mediating these pathological hallmarks. These findings guide future research as DHF shows promise as a TrkB agonist treatment for HAND patients in adjunction to the current antiviral therapies.


Sign in / Sign up

Export Citation Format

Share Document