Paneth Cells in Innate Immunity and Intestinal Inflammation

Author(s):  
Satish Keshav
1999 ◽  
Vol 277 (2) ◽  
pp. G257-G261 ◽  
Author(s):  
Andre J. Ouellette

The hypothesis that epithelial cells release preformed antibiotic peptides as components of mucosal innate immunity has gained experimental support in recent years. In the mammalian small intestine, Paneth cells secrete granules that are rich in α-defensins and additional antimicrobial peptides into the lumen of the crypt. The α-defensins are homologues of peptides that function as mediators of nonoxidative microbial cell killing in phagocytic leukocytes, and they are potent microbicidal agents in in vitro assays. Because certain mouse α-defensins stimulate cultured epithelial cells to secrete chloride ion, those peptides appear to be capable of interacting directly with the apical membranes of neighboring cells and perhaps influencing crypt physiology. In instances of crypt disruption or induced Paneth cell deficiency, crypt intermediate cells appear to compensate by accumulating and secreting Paneth cell antimicrobial peptides. Challenges for the future will be to understand the mechanisms of this epithelial plasticity and to show that Paneth cells contribute directly to innate immunity in the crypt microenvironment.


2013 ◽  
Vol 144 (5) ◽  
pp. S-564
Author(s):  
Shi-Yi Zhou ◽  
Pornchai Leelasinjaroen ◽  
Merritt Gillilland ◽  
Hui Zhou ◽  
Chung Owyang

2014 ◽  
Vol 5 ◽  
Author(s):  
Daniele Corridoni ◽  
Kristen O. Arseneau ◽  
Maria Grazia Cifone ◽  
Fabio Cominelli

2019 ◽  
Vol 2 (2) ◽  
pp. e201900296 ◽  
Author(s):  
Ruixue Liu ◽  
Richard Moriggl ◽  
Dongsheng Zhang ◽  
Haifeng Li ◽  
Rebekah Karns ◽  
...  

Clostridium difficile impairs Paneth cells, driving intestinal inflammation that exaggerates colitis. Besides secreting bactericidal products to restrain C. difficile, Paneth cells act as guardians that constitute a niche for intestinal epithelial stem cell (IESC) regeneration. However, how IESCs are sustained to specify Paneth-like cells as their niche remains unclear. Cytokine-JAK-STATs are required for IESC regeneration. We investigated how constitutive STAT5 activation (Ca-pYSTAT5) restricts IESC differentiation towards niche cells to restrain C. difficile infection. We generated inducible transgenic mice and organoids to determine the effects of Ca-pYSTAT5-induced IESC lineages on C. difficile colitis. We found that STAT5 absence reduced Paneth cells and predisposed mice to C. difficile ileocolitis. In contrast, Ca-pYSTAT5 enhanced Paneth cell lineage tracing and restricted Lgr5 IESC differentiation towards pYSTAT5+Lgr5−CD24+Lyso+ or cKit+ niche cells, which imprinted Lgr5hiKi67+ IESCs. Mechanistically, pYSTAT5 activated Wnt/β-catenin signaling to determine Paneth cell fate. In conclusion, Ca-pYSTAT5 gradients control niche differentiation. Lack of pYSTAT5 reduces the niche cells to sustain IESC regeneration and induces C. difficile ileocolitis. STAT5 may be a transcription factor that regulates Paneth cells to maintain niche regeneration.


2019 ◽  
Author(s):  
Patrick J. Woida ◽  
Karla J. F. Satchell

AbstractMultifunctional autoprocessing repeats-in-toxin (MARTX) toxins are pore-forming toxins that translocate multiple functionally independent effector domains into a target eukaryotic cell. Vibrio cholerae colonizes intestinal epithelial cells (IECs) and utilizes a MARTX toxin with three effector domains — an actin cross-linking domain (ACD), a Rho inactivation domain (RID), and an α/β hydrolase domain (ABH) — to suppress innate immunity and enhance colonization. We investigated whether these multiple catalytic enzymes delivered from a single toxin function in a coordinated manner to regulate intestinal innate immunity. Using cultured IECs, we demonstrate that ACD-induced cytoskeletal collapse activated ERK, p38, and JNK mitogen-activated protein kinase (MAPK) signaling to elicit a robust proinflammatory response characterized by production of interleukin-8 (IL-8) and expression of CXCL8, TNF, and other proinflammatory genes. However, RID and ABH, which are naturally delivered along with ACD, blocked MAPK activation via Rac1 and thus prevented the ACD-induced inflammation. RID also abolished IL-8 secretion induced by heat-killed bacteria, tumor necrosis factor, and latrunculin A. Thus, MARTX toxins utilize enzymatic multifunctionality to silence the host response to bacterial factors and to the damage it causes. Further, these data show how V. cholerae MARTX toxin suppresses intestinal inflammation and contributes to cholera being classically defined as non-inflammatory diarrheal disease.


2020 ◽  
Author(s):  
Zhangliu Jin ◽  
Kai Chen ◽  
Zhe Zhou ◽  
Weihui Peng ◽  
Wei Liu

Abstract Roux-en-Y gastric bypass (RYGB) has been proven to be the most effective treatment for morbid obesity, yet the impact of RYGB on intestinal permeability is fully unknown. In this work, we subjected obese mice to RYGB and sham operation procedures. Serum lipopolysaccharide (LPS), inflammatory cytokines and intestinal permeability were measured at 8 weeks postsurgery. In contrast to sham surgery, RYGB reduced body weight, improved glucose tolerance and insulin resistance, and decreased serum levels of LPS, IL6 and TNFα. Intestinal permeability of the common limb and colon was significantly improved in the RYGB group compared to the sham group. The mRNA levels of IL1β, IL6, and TLR4 of the intestine were significantly decreased in the RYGB group compared with the sham group. The expression of intestinal islet-derived 3β (REG3β), islet-derived 3γ (REG3γ) and IAP was higher in the RYGB group than in the sham group. In conclusion, in a diet-induced obesity (DIO) mouse model,RYGB improved intestinal permeability and attenuated systemic inflammation by downregulating intestinal inflammation and innate immunity, which might result from enhanced production of IAP and antimicrobial peptides.


Sign in / Sign up

Export Citation Format

Share Document