scholarly journals Structural Alteration of OmpR as a Source of Ertapenem Resistance in a CTX-M-15-Producing Escherichia coli O25b:H4 Sequence Type 131 Clinical Isolate

2017 ◽  
Vol 61 (5) ◽  
Author(s):  
Hervé Dupont ◽  
Pascaline Choinier ◽  
David Roche ◽  
Sandine Adiba ◽  
Megan Sookdeb ◽  
...  

ABSTRACT In this study, an ertapenem-nonsusceptible Escherichia coli isolate was investigated to determine the genetic basis for its carbapenem resistance phenotype. This clinical strain was recovered from a patient that received, 1 year previously, ertapenem to treat a cholangitis due to a carbapenem-susceptible extended-spectrum-β-lactamase (ESBL)-producing E. coli isolate. Whole-genome sequencing of these strains was performed using Illumina and single-molecule real-time sequencing technologies. It revealed that they belonged to the ST131 clonal group, had the predicted O25b:H4 serotype, and produced the CTX-M-15 and TEM-1 β-lactamases. One nucleotide substitution was identified between these strains. It affected the ompR gene, which codes for a regulatory protein involved in the control of OmpC/OmpF porin expression, creating a Gly-63-Val substitution. The role of OmpR alteration was confirmed by a complementation experiment that fully restored the susceptibility to ertapenem of the clinical isolate. A modeling study showed that the Gly-63-Val change displaced the histidine-kinase phosphorylation site. SDS-PAGE analysis revealed that the ertapenem-nonsusceptible E. coli strain had a decreased expression of OmpC/OmpF porins. No significant defect in the growth rate or in the resistance to Dictyostelium discoideum amoeba phagocytosis was found in the ertapenem-nonsusceptible E. coli isolate compared to its susceptible parental strain. Our report demonstrates for the first time that ertapenem resistance may emerge clinically from ESBL-producing E. coli due to mutations that modulate the OmpR activity.

mBio ◽  
2014 ◽  
Vol 5 (3) ◽  
Author(s):  
Christopher W. Lennon ◽  
Kimberly C. Lemmer ◽  
Jessica L. Irons ◽  
Max I. Sellman ◽  
Timothy J. Donohue ◽  
...  

ABSTRACTDksA is a global regulatory protein that, together with the alarmone ppGpp, is required for the “stringent response” to nutrient starvation in the gammaproteobacteriumEscherichia coliand for more moderate shifts between growth conditions. DksA modulates the expression of hundreds of genes, directly or indirectly. Mutants lacking a DksA homolog exhibit pleiotropic phenotypes in other gammaproteobacteria as well. Here we analyzed the DksA homolog RSP2654 in the more distantly relatedRhodobacter sphaeroides, an alphaproteobacterium. RSP2654 is 42% identical and similar in length toE. coliDksA but lacks the Zn finger motif of theE. coliDksA globular domain. Deletion of the RSP2654 gene results in defects in photosynthetic growth, impaired utilization of amino acids, and an increase in fatty acid content. RSP2654 complements the growth and regulatory defects of anE. colistrain lacking thedksAgene and modulates transcriptionin vitrowithE. coliRNA polymerase (RNAP) similarly toE. coliDksA. RSP2654 reduces RNAP-promoter complex stabilityin vitrowith RNAPs fromE. coliorR. sphaeroides, alone and synergistically with ppGpp, suggesting that even though it has limited sequence identity toE. coliDksA (DksAEc), it functions in a mechanistically similar manner. We therefore designate the RSP2654 protein DksARsp. Our work suggests that DksARsphas distinct and important physiological roles in alphaproteobacteria and will be useful for understanding structure-function relationships in DksA and the mechanism of synergy between DksA and ppGpp.IMPORTANCEThe role of DksA has been analyzed primarily in the gammaproteobacteria, in which it is best understood for its role in control of the synthesis of the translation apparatus and amino acid biosynthesis. Our work suggests that DksA plays distinct and important physiological roles in alphaproteobacteria, including the control of photosynthesis inRhodobacter sphaeroides. The study of DksARsp, should be useful for understanding structure-function relationships in the protein, including those that play a role in the little-understood synergy between DksA and ppGpp.


2016 ◽  
Vol 60 (11) ◽  
pp. 6795-6805 ◽  
Author(s):  
Amit Ranjan ◽  
Sabiha Shaik ◽  
Agnismita Mondal ◽  
Nishant Nandanwar ◽  
Arif Hussain ◽  
...  

ABSTRACTThe global dissemination and increasing incidence of carbapenem-resistant, Gram-negative organisms have resulted in acute public health concerns. Here, we present a retrospective multicenter study on molecular characterization of metallo-β-lactamase (MBL)-producing clinicalEscherichia coliisolates recovered from extraintestinal infections in two hospitals in Pune, India. We screened a large sample size of 510E. coliisolates for MBL production wherein we profiled their molecular determinants, antimicrobial resistance phenotypes, functional virulence properties, genomic features, and transmission dynamics. Approximately 8% of these isolates were MBL producers, the majority of which were of the NDM-1 (69%) type, followed by NDM-5 (19%), NDM-4 (5.5%), and NDM-7 (5.5%). MBL producers were resistant to all antibiotics tested except for colistin, fosfomycin, and chloramphenicol, which were effective to various extents. Plasmids were found to be an effective means of dissemination of NDM genes and other resistance traits. All MBL producers adhered to and invaded bladder epithelial (T24) cells and demonstrated significant serum resistance. Genomic analysis of MBL-producingE. coliisolates revealed higher resistance but a moderate virulence gene repertoire. A subset of NDM-1-positiveE. coliisolates was identified as dominant sequence type 101 (ST101) while two strains belonging to ST167 and ST405 harbored NDM-5. A majority of MBL-producingE. colistrains revealed unique genotypes, suggesting that they were clonally unrelated. Overall, the coexistence of virulence and carbapenem resistance in clinicalE. coliisolates is of serious concern. Moreover, the emergence of NDM-1 among the globally dominantE. coliST101 isolates warrants stringent surveillance and control measures.


2013 ◽  
Vol 57 (10) ◽  
pp. 5158-5161 ◽  
Author(s):  
Francisco José Pérez-Llarena ◽  
Frédéric Kerff ◽  
Laura Zamorano ◽  
María Carmen Fernández ◽  
Maria Luz Nuñez ◽  
...  

ABSTRACTA novel class C β-lactamase (FOX-8) was isolated from a clinical strain ofEscherichia coli. The FOX-8 enzyme possessed a unique substitution (Phe313Leu) compared to FOX-3. IsogenicE. colistrains carrying FOX-8 showed an 8-fold reduction in resistance to ceftazidime relative to FOX-3. In a kinetic analysis, FOX-8 displayed a 33-fold reduction inkcat/Kmfor ceftazidime compared to FOX-3. In the FOX family of β-lactamases, the Phe313 residue located in the R2 loop affects ceftazidime hydrolysis and alters the phenotype ofE. colistrains carrying this variant.


2012 ◽  
Vol 194 (18) ◽  
pp. 5020-5033 ◽  
Author(s):  
Verónica I. Martínez-Santos ◽  
Abraham Medrano-López ◽  
Zeus Saldaña ◽  
Jorge A. Girón ◽  
José L. Puente

ABSTRACTEnteropathogenic (EPEC) and enterohemorrhagic (EHEC)Escherichia coliare clinically important diarrheagenic pathogens that adhere to the intestinal epithelial surface. TheE. colicommon pili (ECP), or meningitis-associated and temperature-regulated (MAT) fimbriae, are ubiquitous among both commensal and pathogenicE. colistrains and play a role as colonization factors by promoting the interaction between bacteria and host epithelial cells and favoring interbacterial interactions in biofilm communities. The first gene of theecpoperon encodes EcpR (also known as MatA), a proposed regulatory protein containing a LuxR-like C-terminal helix-turn-helix (HTH) DNA-binding motif. In this work, we analyzed the transcriptional regulation of theecpgenes and the role of EcpR as a transcriptional regulator. EHEC and EPECecpRmutants produce less ECP, while plasmids expressing EcpR increase considerably the expression of EcpA and production of ECP. Theecpgenes are transcribed as an operon from a promoter located 121 bp upstream of the start codon ofecpR. EcpR positively regulates this promoter by binding to two TTCCT boxes distantly located upstream of theecppromoter, thus enhancing expression of downstreamecpgenes, leading to ECP production. EcpR mutants in the putative HTH DNA-binding domain are no longer able to activateecpexpression or bind to the TTCCT boxes. EcpR-mediated activation is aided by integration host factor (IHF), which is essential for counteracting the repression exerted by histone-like nucleoid-structuring protein (H-NS) on theecppromoter. This work demonstrates evidence about the interplay between a novel member of a diverse family of regulatory proteins and global regulators in the regulation of a fimbrial operon.


2018 ◽  
Vol 200 (18) ◽  
Author(s):  
Krithika Rajagopalan ◽  
Elizabeth Nagle ◽  
Jonathan Dworkin

Regulatory protein phosphorylation is a conserved mechanism of signaling in all biological systems. Recent phosphoproteomic analyses of phylogenetically diverse bacteria, including the model Gram-negative bacteriumEscherichia coli, demonstrate that many proteins are phosphorylated on serine or threonine residues. In contrast to phosphorylation on histidine or aspartate residues, phosphorylation of serine and threonine residues is stable and requires the action of a partner Ser/Thr phosphatase to remove the modification. Although a number of Ser/Thr kinases have been reported inE. coli, no partner Ser/Thr phosphatases have been identified. Here, we biochemically characterize a novel Ser/Thr phosphatase that acts to dephosphorylate a Ser/Thr kinase that is encoded in the same operon.


mSphere ◽  
2016 ◽  
Vol 1 (4) ◽  
Author(s):  
Timothy J. Johnson ◽  
Jessica L. Danzeisen ◽  
Bonnie Youmans ◽  
Kyle Case ◽  
Katharine Llop ◽  
...  

ABSTRACT A clonal lineage of Escherichia coli known as ST131 has emerged as a dominating strain type causing extraintestinal infections in humans. The evolutionary history of ST131 E. coli is now well understood. However, the role of plasmids in ST131’s evolutionary history is poorly defined. This study utilized real-time, single-molecule sequencing to compare plasmids from various current and historical lineages of ST131. From this work, it was determined that a series of plasmid gains, losses, and recombinational events has led to the currently circulating plasmids of ST131 strains. These plasmids appear to have evolved to acquire similar gene clusters on multiple occasions, suggesting possible plasmid-mediated convergent evolution leading to evolutionary success. These plasmids also appear to be better suited to exist in specific strains of ST131 due to coadaptive mutations. Overall, a series of events has enabled the evolution of ST131 plasmids, possibly contributing to the lineage’s success. The extraintestinal pathogenic Escherichia coli (ExPEC) H30 subclone of sequence type 131 (ST131-H30) has emerged abruptly as a dominant lineage of ExPEC responsible for human disease. The ST131-H30 lineage has been well described phylogenetically, yet its plasmid complement is not fully understood. Here, single-molecule, real-time sequencing was used to generate the complete plasmid sequences of ST131-H30 isolates and those belonging to other ST131 clades. Comparative analyses revealed separate F-type plasmids that have shaped the evolution of the main fluoroquinolone-resistant ST131-H30 clades. Specifically, an F1:A2:B20 plasmid is strongly associated with the H30R/C1 clade, whereas an F2:A1:B− plasmid is associated with the H30Rx/C2 clade. A series of plasmid gene losses, gains, and rearrangements involving IS26 likely led to the current plasmid complements within each ST131-H30 sublineage, which contain several overlapping gene clusters with putative functions in virulence and fitness, suggesting plasmid-mediated convergent evolution. Evidence suggests that the H30Rx/C2-associated F2:A1:B− plasmid type was present in strains ancestral to the acquisition of fluoroquinolone resistance and prior to the introduction of a multidrug resistance-encoding gene cassette harboring bla CTX-M-15. In vitro experiments indicated a host strain-independent low frequency of plasmid transfer, differential levels of plasmid stability even between closely related ST131-H30 strains, and possible epistasis for carriage of these plasmids within the H30R/Rx lineages. IMPORTANCE A clonal lineage of Escherichia coli known as ST131 has emerged as a dominating strain type causing extraintestinal infections in humans. The evolutionary history of ST131 E. coli is now well understood. However, the role of plasmids in ST131’s evolutionary history is poorly defined. This study utilized real-time, single-molecule sequencing to compare plasmids from various current and historical lineages of ST131. From this work, it was determined that a series of plasmid gains, losses, and recombinational events has led to the currently circulating plasmids of ST131 strains. These plasmids appear to have evolved to acquire similar gene clusters on multiple occasions, suggesting possible plasmid-mediated convergent evolution leading to evolutionary success. These plasmids also appear to be better suited to exist in specific strains of ST131 due to coadaptive mutations. Overall, a series of events has enabled the evolution of ST131 plasmids, possibly contributing to the lineage’s success.


2019 ◽  
Vol 8 (34) ◽  
Author(s):  
Gregory H. Tyson ◽  
Cong Li ◽  
Olgica Ceric ◽  
Renate Reimschuessel ◽  
Stephen Cole ◽  
...  

The carbapenem resistance gene bla NDM-5 was identified in an Escherichia coli strain isolated from a dog. We report here the complete genome sequence of this E. coli strain; the bla NDM-5 gene was present on a large IncFII multidrug-resistant plasmid. This is the first bla NDM-5-carrying E. coli strain from an animal in the United States.


2013 ◽  
Vol 58 (2) ◽  
pp. 1146-1152 ◽  
Author(s):  
Jia Chang Cai ◽  
Rong Zhang ◽  
Yan Yan Hu ◽  
Hong Wei Zhou ◽  
Gong-Xiang Chen

ABSTRACTTwenty-two KPC-2-producingEscherichia coliisolates were obtained from three hospitals in Hangzhou, China, from 2007 to 2011. One isolate, with OmpC porin deficiency, exhibited high-level carbapenem resistance. Pulsed-field gel electrophoresis showed that few isolates were indistinguishable or closely related. Multilocus sequence typing indicated that sequence type 131 (ST131) was the predominant type (9 isolates, 40.9%), followed by ST648 (5 isolates), ST405 (2 isolates), ST38 (2 isolates), and 4 single STs, ST69, ST2003, ST2179, and ST744. Phylogenetic analysis indicated that 9 group B2 isolates belonged to ST131, and 5 of 11 group D isolates belonged to ST648. Only one group B1 isolate and one group A isolate were identified. A representative plasmid (pE1) was partially sequenced, and a 7,788-bp DNA fragment encoding Tn3transposase, Tn3resolvase, ISKpn8transposase, KPC-2, and ISKpn6-like transposase was obtained. TheblaKPC-2-surrounding sequence was amplified by a series of primers. The PCR results showed that 13 isolates were consistent with the genetic environment in pE1. It is the first report of rapid emergence of KPC-2-producingE. coliST131 in China. TheblaKPC-2gene of most isolates was located on a similar genetic structure.


mBio ◽  
2015 ◽  
Vol 6 (6) ◽  
Author(s):  
Brian M. Forde ◽  
Minh-Duy Phan ◽  
Jayde A. Gawthorne ◽  
Melinda M. Ashcroft ◽  
Mitchell Stanton-Cook ◽  
...  

ABSTRACTEscherichia colisequence type 131 (ST131) is a clone of uropathogenicE. colithat has emerged rapidly and disseminated globally in both clinical and community settings. Members of the ST131 lineage from across the globe have been comprehensively characterized in terms of antibiotic resistance, virulence potential, and pathogenicity, but to date nothing is known about the methylome of these important human pathogens. Here we used single-molecule real-time (SMRT) PacBio sequencing to determine the methylome ofE. coliEC958, the most-well-characterized completely sequenced ST131 strain. Our analysis of 52,081 methylated adenines in the genome of EC958 discovered threem6A methylation motifs that have not been described previously. Subsequent SMRT sequencing of isogenic knockout mutants identified the two type I methyltransferases (MTases) and one type IIG MTase responsible form6A methylation of novel recognition sites. Although both type I sites were rare, the type IIG sites accounted for more than 12% of all methylated adenines in EC958. Analysis of the distribution of MTase genes across 95 ST131 genomes revealed their prevalence is highly conserved within the ST131 lineage, with most variation due to the presence or absence of mobile genetic elements on which individual MTase genes are located.IMPORTANCEDNA modification plays a crucial role in bacterial regulation. Despite several examples demonstrating the role of methyltransferase (MTase) enzymes in bacterial virulence, investigation of this phenomenon on a whole-genome scale has remained elusive until now. Here we used single-molecule real-time (SMRT) sequencing to determine the first complete methylome of a strain from the multidrug-resistantE. colisequence type 131 (ST131) lineage. By interrogating the methylome computationally and with further SMRT sequencing of isogenic mutants representing previously uncharacterized MTase genes, we defined the target sequences of three novel ST131-specific MTases and determined the genomic distribution of all MTase target sequences. Using a large collection of 95 previously sequenced ST131 genomes, we identified mobile genetic elements as a major factor driving diversity in DNA methylation patterns. Overall, our analysis highlights the potential for DNA methylation to dramatically influence gene regulation at the transcriptional level within a well-definedE. coliclone.


2016 ◽  
Vol 198 (13) ◽  
pp. 1868-1882 ◽  
Author(s):  
Ravish Sharma ◽  
Tomohiro Shimada ◽  
Vinod K. Mishra ◽  
Suchitra Upreti ◽  
Abhijit A. Sardesai

ABSTRACTThe absence of PtsN, the terminal phosphoacceptor of the phosphotransferase system comprising PtsP-PtsO-PtsN, inEscherichia coliconfers a potassium-sensitive (Ks) phenotype as the external K+concentration ([K+]e) is increased above 5 mM. A growth-inhibitory increase in intracellular K+content, resulting from hyperactivated Trk-mediated K+uptake, is thought to cause this Ks. We provide evidence that the Ksof the ΔptsNmutant is associated with K+limitation. Accordingly, the moderate Ksdisplayed by the ΔptsNmutant was exacerbated in the absence of the Trk and Kup K+uptake transporters and was associated with reduced cellular K+content. Conversely, overproduction of multiple K+uptake proteins suppressed the Ks. Expression of PtsN variants bearing the H73A, H73D, and H73E substitutions of the phosphorylation site histidine of PtsN complemented the Ks. Absence of the predicted inner membrane protein YcgO (also called CvrA) suppressed the Ks, which was correlated with elevated cellular K+content in the ΔptsNmutant, but the ΔptsNmutation did not alter YcgO levels. Heterologous overexpression ofycgOalso led to Ksthat was associated with reduced cellular K+content, exacerbated by the absence of Trk and Kup and alleviated by overproduction of Kup. Our findings are compatible with a model that postulates that Ksin the ΔptsNmutant occurs due to K+limitation resulting from activation of K+efflux mediated by YcgO, which may be additionally stimulated by [K+]e, implicating a role for PtsN (possibly its dephosphorylated form) as an inhibitor of YcgO activity.IMPORTANCEThis study examines the physiological link between the phosphotransferase system comprising PtsP-PtsO-PtsN and K+ion metabolism inE. coli. Studies on the physiological defect that renders anE. colimutant lacking PtsN to be growth inhibited by external K+indicate that growth impairment results from cellular K+limitation that is mediated by YcgO, a predicted inner membrane protein. Additional observations suggest that dephospho-PtsN may inhibit and external K+may stimulate K+limitation mediated by YcgO. It is speculated that YcgO-mediated K+limitation may be an output of a response to certain stresses, which by modulating the phosphotransfer capacity of the PtsP-PtsO-PtsN phosphorelay leads to growth cessation and stress tolerance.


Sign in / Sign up

Export Citation Format

Share Document