scholarly journals In Vitro Activities of Bedaquiline and Delamanid against Nontuberculous Mycobacteria Isolated in Beijing, China

2019 ◽  
Vol 63 (8) ◽  
Author(s):  
Xia Yu ◽  
XiaoPan Gao ◽  
Chenghai Li ◽  
Jingjing Luo ◽  
Shuan Wen ◽  
...  

ABSTRACT Due to the natural resistance of nontuberculous mycobacteria (NTM) against multiple antibiotics, treatment of infections caused by them is often long-course and less successful. The main objective of our study was the evaluation of in vitro susceptibility of 209 isolates consisting of different NTM species against bedaquiline and delamanid. Furthermore, reference strains of 33 rapidly growing mycobacterium (RGM) species and 19 slowly growing mycobacterium (SGM) species were also tested. Bedaquiline exhibited strong in vitro activity against both reference strains and clinical isolates of different SGM species, as the majority of the strains demonstrated MICs far below 1 μg/ml. Bedaquiline (Bdq) also exhibited potent activity against the recruited RGM species. A total of 29 out of 33 reference RGM strains had MICs lower than 1 μg/ml. According to the MIC distributions, the tentative epidemiological cutoff (ECOFF) values, and the pharmacokinetic data, a uniform breakpoint of 2 μg/ml was temporarily proposed for NTM’s Bdq susceptibility testing. Although delamanid (Dlm) was not active against most of the tested reference strains and clinical isolates of RGM species, it exhibited highly variable antimicrobial activities against the 19 tested SGM species. Eleven species had MICs lower than 0.25 μg/ml, and 7 species had MICs greater than 32 μg/ml. Large numbers of M. kansasii (39/45) and M. gordonae (6/10) clinical isolates had MICs of ≤0.125 μg/ml. This study demonstrated that bedaquiline had potent activity against different NTM species in vitro, and delamanid had moderate activity against certain species of SGM. The data provided important insights on the possible clinical application of Bdq and Dlm to treat NTM infections.

2018 ◽  
Vol 62 (7) ◽  
Author(s):  
Jingjing Luo ◽  
Xia Yu ◽  
Guanglu Jiang ◽  
Yuhong Fu ◽  
Fengmin Huo ◽  
...  

ABSTRACT Due to the natural resistance of nontuberculous mycobacteria (NTM) to many antibiotics, the treatment of diseases caused by NTM is often long-term but unsuccessful. The main goal of this study was to evaluate the in vitro susceptibilities to clofazimine of 209 isolates consisting of different NTM species isolated in Beijing, China. Furthermore, 47 reference strains were also tested, including 30 rapidly growing mycobacterium (RGM) species and 17 slowly growing mycobacterium (SGM) species. The potential molecular mechanism contributing to clofazimine resistance of NTM was investigated as well. Clofazimine exhibited excellent activity against both reference strains and clinical isolates of different SGM species, and most of the strains had MICs far below 1 μg/ml. Although the majority of the clinical isolates of Mycobacterium abscessus and Mycobacterium fortuitum had MICs higher than 2 μg/ml, 17 out of the 30 reference strains of different RGM species had MICs below 1 μg/ml in vitro . According to the MIC distributions, the tentative epidemiological cutoff (ECOFF) values for Mycobacterium kansasii , Mycobacterium avium , and Mycobacterium intracellulare were defined at 0.5 μg/ml, 1 μg/ml, and 2 μg/ml, respectively. Intriguingly, single-direction cross-resistance between bedaquiline- and clofazimine (Cfz)-resistant isolates was observed among the tested NTM species. This study demonstrates that clofazimine had strong activity against most SGM species in vitro , as well as some RGM species. The data provide important insights into the possible clinical application of Cfz to treat NTM infections.


2021 ◽  
Vol 65 (5) ◽  
Author(s):  
Dae Hun Kim ◽  
Su-Young Kim ◽  
Hee Jae Huh ◽  
Nam Yong Lee ◽  
Won-Jung Koh ◽  
...  

ABSTRACT We evaluated the in vitro activity of rifamycin derivatives, including rifampin, rifapentine, rifaximin, and rifabutin, against clinical nontuberculous mycobacteria (NTM) isolates. Of the rifamycin derivatives, rifabutin showed the lowest MICs against all NTM species, including Mycobacterium avium complex, M. abscessus, and M. kansasii. Rifabutin also had effective in vitro activity against macrolide- and aminoglycoside-resistant NTM isolates. Rifabutin could be worth considering as a therapeutic option for NTM disease, particularly drug-resistant disease.


2011 ◽  
Vol 55 (5) ◽  
pp. 2398-2402 ◽  
Author(s):  
Chau Minh Tran ◽  
Kaori Tanaka ◽  
Yuka Yamagishi ◽  
Takatsugu Goto ◽  
Hiroshige Mikamo ◽  
...  

ABSTRACTWe evaluated thein vitroantianaerobic activity of razupenem (SMP-601, PTZ601), a new parenterally administered carbapenem, against 70 reference strains and 323 clinical isolates. Razupenem exhibited broad-spectrum activity against anaerobes, inhibiting most of the reference strains when used at a concentration of ≤1 μg/ml. Furthermore, it exhibited strong activity, comparable to those of other carbapenems (meropenem and doripenem), against clinically isolated non-fragilis Bacteroidesspp. (MIC90s of 2 μg/ml), with MIC90values of 0.06, 0.03, and 0.5 μg/ml againstPrevotellaspp.,Porphyromonasspp., andFusobacteriumspp., respectively. Clinical isolates of anaerobic Gram-positive cocci,Eggerthellaspp., andClostridiumspp. were highly susceptible to razupenem (MIC90s, 0.03 to 1 μg/ml).


2019 ◽  
Vol 63 (8) ◽  
Author(s):  
Dae Hun Kim ◽  
Byung Woo Jhun ◽  
Seong Mi Moon ◽  
Su-Young Kim ◽  
Kyeongman Jeon ◽  
...  

ABSTRACT We evaluated the in vitro activities of the antimicrobial drugs bedaquiline and delamanid against the major pathogenic nontuberculous mycobacteria (NTM). Delamanid showed high MIC values for all NTM except Mycobacterium kansasii. However, bedaquiline showed low MIC values for the major pathogenic NTM, including Mycobacterium avium complex, Mycobacterium abscessus subsp. abscessus, M. abscessus subsp. massiliense, and M. kansasii. Bedaquiline also had low MIC values with macrolide-resistant NTM strains and warrants further investigation as a potential antibiotic for NTM treatment.


2017 ◽  
Vol 61 (6) ◽  
Author(s):  
Dinah Binte Aziz ◽  
Jian Liang Low ◽  
Mu-Lu Wu ◽  
Martin Gengenbacher ◽  
Jeanette W. P. Teo ◽  
...  

ABSTRACT Lung infections caused by Mycobacterium abscessus are emerging as a global threat to individuals with cystic fibrosis and to other patient groups. Recent evidence for human-to-human transmission worsens the situation. M. abscessus is an intrinsically multidrug-resistant pathogen showing resistance to even standard antituberculosis drugs, such as rifampin. Here, our objective was to identify existing drugs that may be employed for the treatment of M. abscessus lung disease. A collection of more than 2,700 approved drugs was screened at a single-point concentration against an M. abscessus clinical isolate. Hits were confirmed with fresh solids in dose-response experiments. For the most attractive hit, growth inhibition and bactericidal activities against reference strains of the three M. abscessus subspecies and a collection of clinical isolates were determined. Surprisingly, the rifampin derivative rifabutin had MICs of 3 ± 2 μM (3 μg/ml) against the screening strain, the reference strains M. abscessus subsp. abscessus ATCC 19977, M. abscessus subsp. bolletii CCUG 50184-T, and M. abscessus subsp. massiliense CCUG 48898-T, as well as against a collection of clinical isolates. Furthermore, rifabutin was active against clarithromycin-resistant strains. In conclusion, rifabutin, in contrast to rifampin, is active against the Mycobacterium abscessus complex bacteria in vitro and may be considered for treatment of M. abscessus lung disease.


2011 ◽  
Vol 55 (11) ◽  
pp. 5099-5106 ◽  
Author(s):  
Scott S. Walker ◽  
Yiming Xu ◽  
Ilias Triantafyllou ◽  
Michelle F. Waldman ◽  
Cara Mendrick ◽  
...  

ABSTRACTThe echinocandins are a class of semisynthetic natural products that target β-1,3-glucan synthase (GS). Their proven clinical efficacy combined with minimal safety issues has made the echinocandins an important asset in the management of fungal infection in a variety of patient populations. However, the echinocandins are delivered only parenterally. A screen for antifungal bioactivities combined with mechanism-of-action studies identified a class of piperazinyl-pyridazinones that target GS. The compounds exhibitedin vitroactivity comparable, and in some cases superior, to that of the echinocandins. The compounds inhibit GSin vitro, and there was a strong correlation between enzyme inhibition andin vitroantifungal activity. In addition, like the echinocandins, the compounds caused a leakage of cytoplasmic contents from yeast and produced a morphological response in molds characteristic of GS inhibitors. Spontaneous mutants ofSaccharomyces cerevisiaewith reduced susceptibility to the piperazinyl-pyridazinones had substitutions inFKS1. The sites of these substitutions were distinct from those conferring resistance to echinocandins; likewise, echinocandin-resistant isolates remained susceptible to the test compounds. Finally, we present efficacy and pharmacokinetic data on an example of the piperazinyl-pyridazinone compounds that demonstrated efficacy in a murine model ofCandida glabratainfection.


2014 ◽  
Vol 58 (12) ◽  
pp. 7398-7404 ◽  
Author(s):  
Tamirat Gebru ◽  
Benjamin Mordmüller ◽  
Jana Held

ABSTRACTPlasmodium falciparumgametocytes are not associated with clinical symptoms, but they are responsible for transmitting the pathogen to mosquitoes. Therefore, gametocytocidal interventions are important for malaria control and resistance containment. Currently available drugs and vaccines are not well suited for that purpose. Several dyes have potent antimicrobial activity, but their use against gametocytes has not been investigated systematically. The gametocytocidal activity of nine synthetic dyes and four control compounds was tested against stage V gametocytes of the laboratory strain 3D7 and three clinical isolates ofP. falciparumwith a bioluminescence assay. Five of the fluorescent dyes had submicromolar 50% inhibitory concentration (IC50) values against mature gametocytes. Three mitochondrial dyes, MitoRed, dihexyloxacarbocyanine iodide (DiOC6), and rhodamine B, were highly active (IC50s < 200 nM). MitoRed showed the highest activity against gametocytes, with IC50s of 70 nM against 3D7 and 120 to 210 nM against clinical isolates. All compounds were more active against the laboratory strain 3D7 than against clinical isolates. In particular, the endoperoxides artesunate and dihydroartemisinin showed a 10-fold higher activity against 3D7 than against clinical isolates. In contrast to all clinically used antimalarials, several fluorescent dyes had surprisingly highin vitroactivity against late-stage gametocytes. Since they also act against asexual blood stages, they shall be considered starting points for the development of new antimalarial lead compounds.


2018 ◽  
Vol 62 (10) ◽  
Author(s):  
James D. Blanchard ◽  
Valerie Elias ◽  
David Cipolla ◽  
Igor Gonda ◽  
Luiz E. Bermudez

ABSTRACT Nontuberculous mycobacteria (NTM) affect an increasing number of individuals worldwide. Infection with these organisms is more common in patients with chronic lung conditions, and treatment is challenging. Quinolones, such as ciprofloxacin, have been used to treat patients, but the results have not been encouraging. In this report, we evaluate novel formulations of liposome-encapsulated ciprofloxacin (liposomal ciprofloxacin) in vitro and in vivo. Its efficacy against Mycobacterium avium and Mycobacterium abscessus was examined in macrophages, in biofilms, and in vivo using intranasal instillation mouse models. Liposomal ciprofloxacin was significantly more active than free ciprofloxacin against both pathogens in macrophages and biofilms. When evaluated in vivo, treatment with the liposomal ciprofloxacin formulations was associated with significant decreases in the bacterial loads in the lungs of animals infected with M. avium and M. abscessus. In summary, topical delivery of liposomal ciprofloxacin in the lung at concentrations greater than those achieved in the serum can be effective in the treatment of NTM, and further evaluation is warranted.


2021 ◽  
Vol 65 (5) ◽  
Author(s):  
Bettina Schulthess ◽  
Daniel Schäfle ◽  
Nicole Kälin ◽  
Tamara Widmer ◽  
Peter Sander

ABSTRACT Recent outbreaks of cardiac surgery-associated Mycobacterium chimaera infections have highlighted the importance of species differentiation within the Mycobacterium avium complex and pointed to a lack of antibiotic susceptibility data for M. chimaera. Using the MGIT 960/EpiCenter TB eXiST platform, we have determined antibiotic susceptibility patterns of 48 clinical M. chimaera isolates and 139 other nontuberculous mycobacteria, including 119 members of the M. avium complex and 20 Mycobacterium kansasii isolates toward clofazimine and other drugs used to treat infections with slow-growing nontuberculous mycobacteria (NTM). MIC50, MIC90, and tentative epidemiological cutoff (ECOFF) values for clofazimine were 0.5 mg/liter, 1 mg/liter, and 2 mg/liter, respectively, for M. chimaera. Comparable values were observed for other M. avium complex members, whereas lower MIC50 (≤0.25 mg/liter), MIC90 (0.5 mg/liter), and ECOFF (1 mg/liter) values were found for M. kansasii. Susceptibility to clarithromycin, ethambutol, rifampin, rifabutin, amikacin, moxifloxacin, and linezolid was in general similar for M. chimaera and other members of the M. avium complex, but increased for M. kansasii. The herein determined MIC distributions, MIC90, and ECOFF values of clofazimine for M. chimaera and other NTM provide the basis for the definition of clinical breakpoints. Further studies are needed to establish correlation of in vitro susceptibility and clinical outcome.


Sign in / Sign up

Export Citation Format

Share Document