scholarly journals Sequential Open-Label Study of the Safety, Tolerability, and Pharmacokinetic Interactions between Dihydroartemisinin-Piperaquine and Mefloquine in Healthy Thai Adults

2019 ◽  
Vol 63 (8) ◽  
Author(s):  
Borimas Hanboonkunupakarn ◽  
Rob W. van der Pluijm ◽  
Richard Hoglund ◽  
Sasithon Pukrittayakamee ◽  
Markus Winterberg ◽  
...  

ABSTRACT Artemisinin-based combination therapies (ACTs) have contributed substantially to the global decline in Plasmodium falciparum morbidity and mortality, but resistance to artemisinins and their partner drugs is increasing in Southeast Asia, threatening malaria control. New antimalarial compounds will not be generally available soon. Combining three existing antimalarials in the form of triple ACTs, including dihydroartemisinin (DHA)-piperaquine + mefloquine, is a potential treatment option for multidrug-resistant Plasmodium falciparum malaria. In a sequential open-label study, healthy Thai volunteers were treated with DHA-piperaquine (120 to 960 mg), mefloquine (500 mg), and DHA-piperaquine + mefloquine (120 to 960 mg + 500 mg), and serial symptom questionnaires, biochemistry, full blood counts, pharmacokinetic profiles, and electrocardiographic measurements were performed. Fifteen healthy subjects were enrolled. There was no difference in the incidence or severity of adverse events between the three treatment arms. The slight prolongation in QTc (QT interval corrected for heart rate) associated with DHA-piperaquine administration did not increase after administration of DHA-piperaquine + mefloquine. The addition of mefloquine had no significant effect on the pharmacokinetic properties of piperaquine. However, coadministration of mefloquine significantly reduced the exposures to dihydroartemisinin for area under the concentration-time curve (−22.6%; 90% confidence interval [CI], −33.1, −10.4; P = 0.0039) and maximum concentration of drug in serum (−29.0%; 90% CI, −40.6, −15.1; P = 0.0079). Mefloquine can be added safely to dihydroartemisinin-piperaquine in malaria treatment. (This study has been registered at ClinicalTrials.gov under identifier NCT02324738.)

2007 ◽  
Vol 51 (8) ◽  
pp. 2982-2984 ◽  
Author(s):  
Mary B. Wire ◽  
Charles H. Ballow ◽  
Julie Borland ◽  
Mark J. Shelton ◽  
Yu Lou ◽  
...  

ABSTRACT Plasma ketoconazole (KETO), amprenavir (APV), and ritonavir (RTV) pharmacokinetics were evaluated in 15 healthy subjects after being treated with KETO at 200 mg once daily (QD), fosamprenavir (FPV)/RTV at 700/100 mg twice daily (BID), and then KETO at 200 mg QD plus FPV/RTV at 700/100 mg BID in this open-label study. The KETO area under the concentration-time curve at steady state was increased 2.69-fold with FPV/RTV. APV exposure was unchanged, and RTV exposure was slightly increased.


2014 ◽  
Vol 58 (12) ◽  
pp. 7340-7346 ◽  
Author(s):  
Borimas Hanboonkunupakarn ◽  
Elizabeth A. Ashley ◽  
Podjanee Jittamala ◽  
Joel Tarning ◽  
Sasithon Pukrittayakamee ◽  
...  

ABSTRACTDihydroartemisinin-piperaquine is an artemisinin-based combination treatment (ACT) recommended by the WHO for uncomplicatedPlasmodium falciparummalaria, and it is being used increasingly for resistant vivax malaria where combination with primaquine is required for radical cure. The WHO recently reinforced its recommendations to add a single dose of primaquine to ACTs to reduceP. falciparumtransmission in low-transmission settings. The pharmacokinetics of primaquine and dihydroartemisinin-piperaquine were evaluated in 16 healthy Thai adult volunteers in a randomized crossover study. Volunteers were randomized to two groups of three sequential hospital admissions to receive 30 mg (base) primaquine, 3 tablets of dihydroartemisinin-piperaquine (120/960 mg), and the drugs together at the same doses. Blood sampling was performed over 3 days following primaquine and 36 days following dihydroartemisinin-piperaquine dosing. Pharmacokinetic assessment was done with a noncompartmental approach. The drugs were well tolerated. There were no statistically significant differences in dihydroartemisinin and piperaquine pharmacokinetics with or without primaquine. Dihydroartemisinin-piperaquine coadministration significantly increased plasma primaquine levels; geometric mean ratios (90% confidence interval [CI]) of primaquine combined versus primaquine alone for maximum concentration (Cmax), area under the concentration-time curve from 0 h to the end of the study (AUC0–last), and area under the concentration-time curve from 0 h to infinity (AUC0–∞) were 148% (117 to 187%), 129% (103 to 163%), and 128% (102 to 161%), respectively. This interaction is similar to that described recently with chloroquine and may result in an enhanced radical curative effect. (This study has been registered at ClinicalTrials.gov under registration no. NCT01525511.)


2014 ◽  
Vol 58 (12) ◽  
pp. 7557-7559 ◽  
Author(s):  
L. Davies Forsman ◽  
T. Schön ◽  
U. S. H. Simonsson ◽  
J. Bruchfeld ◽  
M. Larsson ◽  
...  

ABSTRACTWe investigated the activity of trimethoprim-sulfamethoxazole (SXT) againstMycobacterium tuberculosis, the pathogen that causes tuberculosis (TB). The MIC distribution of SXT was 0.125/2.4 to 2/38 mg/liter for the 100 isolates tested, including multi- and extensively drug-resistant isolates (MDR/XDR-TB), whereas the intracellular MIC90of sulfamethoxazole (SMX) for the pansusceptible strain H37Rv was 76 mg/liter. In an exploratory analysis using a ratio of the unbound area under the concentration-time curve from 0 to 24 h over MIC (fAUC0–24/MIC) using ≥25 as a potential target, the cumulative fraction response was ≥90% at doses of ≥2,400 mg of SMX. SXT is a potential treatment option for MDR/XDR-TB.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Jeffrey Livezey ◽  
Patrick Twomey ◽  
Meshell Morrison ◽  
Susan Cicatelli ◽  
Elizabeth H. Duncan ◽  
...  

Abstract Background Malaria remains the top infectious disease threat facing the U.S. military in many forward operating environments. Compliance with malaria chemoprophylaxis remains a critical component in preventing malaria in the deployed Service Member. Studies of previous military operations show that compliance is consistently higher with weekly versus daily dosing regimens. Current FDA approved weekly chemoprophylaxis options have contraindications that can limit prescribing. The combination of chloroquine (CQ) with azithromycin (AZ) has previously been shown to be an efficacious treatment option for malaria, has pharmacokinetics compatible with weekly dosing, and has shown synergy when combined in vitro. Methods In this open label study, 18 healthy volunteers, aged 18–50 years (inclusive), were randomly assigned to receive either 300 mg CQ or 300 mg CQ and 2 gm azithromycin (CQAZ) of directly observed therapy, weekly for 3 weeks prior to undergoing mosquito bite challenge with chloroquine-resistant Plasmodium falciparum. Volunteers that remained asymptomatic and had no evidence of parasitaemia continued to receive weekly post-exposure chemoprophylaxis for 3 weeks following malaria challenge. The primary endpoint was the number of volunteers that remained asymptomatic and had no evidence of parasitaemia 28 days after the malaria challenge. Results All 6 (100%) volunteers randomized to the CQ control group became symptomatic with parasitaemia during the 28-day post-challenge period. Only 1/12 (8.3%) of volunteers in the CQAZ group developed symptoms and parasitaemia during the 28-day post-challenge period. However, after chemoprophylaxis was discontinued an additional 6 volunteers developed parasitaemia between days 28–41 after challenge, with 4 of 6 experiencing symptoms. 80% of subjects in the CQAZ group experienced treatment related gastrointestinal adverse events (including 13% that experienced severe nausea) compared to 38% in the CQ group. A comparison of the pharmacokinetics in the CQAZ group demonstrated higher azithromycin Cmax (p = 0.03) and AUC (p = 0.044) levels in those volunteers who never became parasitaemic compared to those who did. Conclusion Given the high rate of side effects and poor efficacy when administered for 3 weeks before and after challenge, the combination of weekly chloroquine and azithromycin is a suboptimal regimen combination for weekly malaria chemoprophylaxis. Trial registration ClinicalTrials.gov NCT03278808


2014 ◽  
Vol 52 (11) ◽  
pp. 965-972 ◽  
Author(s):  
Nader N. Youssef ◽  
Eduardo Tron ◽  
Vasundhara Tolia ◽  
Jennifer E. Hamer-Maansson ◽  
Per Lundborg ◽  
...  

2016 ◽  
Vol 60 (10) ◽  
pp. 5922-5927 ◽  
Author(s):  
Shashikant Srivastava ◽  
Chawanga Modongo ◽  
Chandima W. Siyambalapitiyage Dona ◽  
Jotam G. Pasipanodya ◽  
Devyani Deshpande ◽  
...  

ABSTRACTAminoglycosides such as amikacin are currently used for the treatment of multidrug-resistant tuberculosis (MDR-TB). However, formal pharmacokinetic/pharmacodynamic (PK/PD) studies to identify amikacin exposures and dosing schedules that optimizeMycobacterium tuberculosiskilling have not been performed. It is believed that aminoglycosides do not work well under acidic conditions, which, if true, would mean poor sterilizing activity against semidormant bacilli at low pH. We performed time-kill studies to compare the bactericidal effect of amikacin in log-phase-growth bacilli with the sterilizing effect in semidormant bacilli at pH 5.8 in broth. In log-phaseM. tuberculosisat normal pH versus semidormantM. tuberculosisat pH 5.8, the maximal kill (Emax) estimate and 95% confidence interval (CI) were 5.39 (95% CI, 4.91 to 5.63) versus 4.88 (CI, 4.46 to 5.22) log10CFU/ml, while the concentration mediating 50% ofEmax(EC50) was 1.0 (CI, 0. 0.86 to 1.12) versus 0.60 (CI, 0.50 to 0.66) times the MIC, respectively. Thus, the optimal exposures and kill rates identified for log-phaseM. tuberculosiswill be optimal even for semidormant bacilli. Next, we performed exposure-response and dose-scheduling studies in the hollow-fiber system model of tuberculosis using log-phaseM. tuberculosis. We recapitulated the amikacin concentration-time profiles observed in lungs of patients treated over 28 days. The PK/PD index linked toM. tuberculosiskill was the peak concentration (Cmax)-to-MIC ratio (r2> 0.99), closely followed by the area under the concentration-time curve from 0 to 24 h (AUC0–24)-to-MIC ratio (r2= 0.98). The EC90was aCmax/MIC ratio of 10.13 (95% CI, 7.73 to 12.48). The EC90is the dosing target for intermittent therapy that optimizes cure in TB programs for MDR-TB patients.


2017 ◽  
Vol 61 (5) ◽  
Author(s):  
Jian Zhou ◽  
Kimberly R. Ledesma ◽  
Kai-Tai Chang ◽  
Henrietta Abodakpi ◽  
Song Gao ◽  
...  

ABSTRACT Multidrug-resistant (MDR) Acinetobacter baumannii is increasingly more prevalent in nosocomial infections. Although in vitro susceptibility of A. baumannii to minocycline is promising, the in vivo efficacy of minocycline has not been well established. In this study, the in vivo activity of minocycline was evaluated in a neutropenic murine pneumonia model. Specifically, we investigated the relationship between minocycline exposure and bactericidal activity using five A. baumannii isolates with a broad range of susceptibility (MIC ranged from 0.25 mg/liter to 16 mg/liter). The pharmacokinetics of minocycline (single dose of 25 mg/kg of body weight, 50 mg/kg, 100 mg/kg, and a humanized regimen, given intraperitoneally) in serum and epithelial lining fluid (ELF) were characterized. Dose linearity was observed for doses up to 50 mg/kg and pulmonary penetration ratios (area under the concentration-time curve in ELF from 0 to 24 h [AUCELF,0–24]/area under the concentration time curve in serum from 0 to 24 h [AUCserum,0–24]) ranged from 2.5 to 2.8. Pharmacokinetic-pharmacodynamics (PK-PD) index values in ELF for various dose regimens against different A. baumannii isolates were calculated. The maximum efficacy at 24 h was approximately 1.5-log-unit reduction of pulmonary bacterial burdens from baseline. The AUC/MIC ratio was the PK-PD index most closely correlating to the bacterial burden (r 2 = 0.81). The required AUCELF,0–24/MIC for maintaining stasis and achieving 1-log-unit reduction were 140 and 410, respectively. These findings could guide the treatment of infections caused by A. baumannii using minocycline in the future. Additional studies to examine resistance development during therapy are warranted.


Sign in / Sign up

Export Citation Format

Share Document