scholarly journals New Macrolide-Lincosamide-Streptogramin B Resistance Gene erm(48) on the Novel Plasmid pJW2311 in Staphylococcus xylosus

2017 ◽  
Vol 61 (7) ◽  
Author(s):  
Juliette R. K. Wipf ◽  
Matthew C. Riley ◽  
Stephen A. Kania ◽  
David A. Bemis ◽  
Sabrina Andreis ◽  
...  

ABSTRACT Whole-genome sequencing of Staphylococcus xylosus strain JW2311 from bovine mastitis milk identified the novel 49.3-kb macrolide-lincosamide-streptogramin B (MLSB) resistance plasmid pJW2311. It contained the macrolide resistance gene mph(C), the macrolide-streptogramin B resistance gene msr(A), and the new MLSB resistance gene erm(48) and could be transformed into Staphylococcus aureus by electroporation. Functionality of erm(48) was demonstrated by cloning and expression in S. aureus.

2012 ◽  
Vol 57 (3) ◽  
pp. 1524-1528 ◽  
Author(s):  
Ewan M. Harrison ◽  
Gavin K. Paterson ◽  
Matthew T. G. Holden ◽  
Fiona J. E. Morgan ◽  
Anders Rhod Larsen ◽  
...  

ABSTRACTRecently, a novel variant ofmecAknown asmecC(mecALGA251) was identified inStaphylococcus aureusisolates from both humans and animals. In this study, we identified aStaphylococcus xylosusisolate that harbors a new allotype of themecCgene,mecC1. Whole-genome sequencing revealed thatmecC1forms part of a class Emeccomplex (mecI-mecR1-mecC1-blaZ) located at theorfXlocus as part of a likely staphylococcal cassette chromosomemecelement (SCCmec) remnant, which also contains a number of other genes present on the type XI SCCmec.


2020 ◽  
Vol 9 (19) ◽  
Author(s):  
Soyoun Park ◽  
Dongyun Jung ◽  
Simon Dufour ◽  
Jennifer Ronholm

Staphylococcus aureus is one of the most common etiological agents responsible for contagious bovine mastitis. Here, we report the draft whole-genome sequences, with annotations, of 27 S. aureus strains and 3 Staphylococcus species strains that were isolated from Holstein cows with intramammary infection in Canada.


2016 ◽  
Vol 54 (4) ◽  
pp. 1008-1016 ◽  
Author(s):  
Lena Strauß ◽  
Ulla Ruffing ◽  
Salim Abdulla ◽  
Abraham Alabi ◽  
Ruslan Akulenko ◽  
...  

Staphylococcus aureusis a major bacterial pathogen causing a variety of diseases ranging from wound infections to severe bacteremia or intoxications. Besides host factors, the course and severity of disease is also widely dependent on the genotype of the bacterium. Whole-genome sequencing (WGS), followed by bioinformatic sequence analysis, is currently the most extensive genotyping method available. To identify clinically relevant staphylococcal virulence and resistance genes in WGS data, we developed anin silicotyping scheme for the software SeqSphere+(Ridom GmbH, Münster, Germany). The implemented target genes (n= 182) correspond to those queried by the IdentibacS. aureusGenotyping DNA microarray (Alere Technologies, Jena, Germany). Thein silicoscheme was evaluated by comparing the typing results of microarray and of WGS for 154 humanS. aureusisolates. A total of 96.8% (n= 27,119) of all typing results were equally identified with microarray and WGS (40.6% present and 56.2% absent). Discrepancies (3.2% in total) were caused by WGS errors (1.7%), microarray hybridization failures (1.3%), wrong prediction of ambiguous microarray results (0.1%), or unknown causes (0.1%). Superior to the microarray, WGS enabled the distinction of allelic variants, which may be essential for the prediction of bacterial virulence and resistance phenotypes. Multilocus sequence typing clonal complexes and staphylococcal cassette chromosomemecelement types inferred from microarray hybridization patterns were equally determined by WGS. In conclusion, WGS may substitute array-based methods due to its universal methodology, open and expandable nature, and rapid parallel analysis capacity for different characteristics in once-generated sequences.


2021 ◽  
Vol 10 (48) ◽  
Author(s):  
Marissa N. Schroeter ◽  
Safiya J. Gazali ◽  
Anutthaman Parthasarathy ◽  
Crista B. Wadsworth ◽  
Renata Rezende Miranda ◽  
...  

We report the isolation, whole-genome sequencing, and annotation of Enterobacter sp. strain RIT 637, Pseudomonas sp. strain RIT 778, and Deinococcus sp. strain RIT 780. Disk diffusion assays using spent medium demonstrated that all bacteria produced bactericidal compounds against Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, and Staphylococcus aureus ATCC 25923.


2020 ◽  
Vol 64 (5) ◽  
Author(s):  
Sybille Schwendener ◽  
Valentina Donà ◽  
Vincent Perreten

ABSTRACT Chromosomal resistance islands containing the methicillin resistance gene mecD (McRImecD) have been reported in Macrococcus caseolyticus. Here, we identified novel macrolide resistance genes in Macrococcus canis on similar elements, called McRImsr. These elements were also integrated into the 3′ end of the 30S ribosomal protein S9 gene (rpsI), delimited by characteristic attachment (att) sites, and carried a related site-specific integrase gene (int) at the 5′ end. They carried novel macrolide resistance genes belonging to the msr family of ABC subfamily F (ABC-F)-type ribosomal protection protein [msr(F) and msr(H)] and the macrolide efflux mef family [mef(D)]. Highly related mef(D)-msr(F) fragments were found on diverse McRImsr elements in M. canis, M. caseolyticus, and Staphylococcus aureus. Another McRImsr-like element identified in an M. canis strain lacked the classical att site at the 3′ end and carried the msr(H) gene but no neighboring mef gene. The expression of the novel resistance genes in S. aureus resulted in a low-to-moderate increase in the MIC of erythromycin but not streptogramin B. In the mef(D)-msr(F) operon, the msr(F) gene was shown to be the crucial determinant for macrolide resistance. The detection of circular forms of McRImsr and the mef(D)-msr(F) fragment suggested mobility of both the island and the resistance gene subunit. The discovery of McRImsr in different Macrococcus species and S. aureus indicates that these islands have a potential for dissemination of antibiotic resistance within the Staphylococcaceae family.


mSphere ◽  
2020 ◽  
Vol 5 (4) ◽  
Author(s):  
Sharmin Baig ◽  
Anders Rhod Larsen ◽  
Patrícia Martins Simões ◽  
Frédéric Laurent ◽  
Thor Bech Johannesen ◽  
...  

ABSTRACT Since the late 1990s, changes in the epidemiology of methicillin-resistant Staphylococcus aureus (MRSA) were recognized with the emergence of community-associated MRSA (CA-MRSA). CA-MRSA belonging to clonal complex 152 (CC152), carrying the small staphylococcal cassette chromosome mec (SCCmec) type V and encoding the Panton-Valentine leukocidin (PVL), has been observed in Europe. The aim of this study was to investigate its origin, evolution, and dissemination. Whole-genome sequencing was performed on a global collection of 149 CC152 isolates spanning 20 years (93 methicillin-susceptible S. aureus [MSSA] and 56 MRSA isolates). Core genome phylogeny, Bayesian inference, in silico resistance analyses, and genomic characterization were applied. Phylogenetic analysis revealed two major distinct clades, one dominated by MSSA and the other populated only by MRSA. The MSSA isolates were predominately from sub-Saharan Africa, whereas MRSA was almost exclusively from Europe. The European MRSA isolates all harbored an SCCmec type V (5C2&5) element, whereas other SCCmec elements were sporadically detected in MRSA from the otherwise MSSA-dominated clade, including SCCmec types IV (2B), V (5C2), and XIII (9A). In total, 93% of the studied CC152 isolates were PVL positive. Bayesian coalescent inference suggests an emergence of the European CC152-MRSA in the 1990s, while the CC152 lineage dates back to the 1970s. The CA-MRSA CC152 clone mimics the European CC80 CA-MRSA lineage by its emergence from a PVL-positive MSSA ancestor from North Africa or Europe. The CC152 lineage has acquired SCCmec several times, but acquisition of SCCmec type V (5C2&5) seems associated with expansion of MRSA CC152 in Europe. IMPORTANCE Understanding the evolution of CA-MRSA is important in light of the increasing importance of this reservoir in the dissemination of MRSA. Here, we highlight the story of the CA-MRSA CC152 lineage using whole-genome sequencing on an international collection of CC152. We show that the evolution of this lineage is novel and that antibiotic usage may have the potential to select for the phage-encoded Panton-Valentine leukocidin. The diversity of the strains correlated highly to geography, with higher level of resistance observed among the European MRSA isolates. The mobility of the SCCmec element is mandatory for the emergence of novel MRSA lineages, and we show here distinct acquisitions, one of which is linked to the successful clone found throughout Europe today.


2016 ◽  
Vol 61 (3) ◽  
Author(s):  
Ling-Han Kong ◽  
Chang-Wei Lei ◽  
Su-Zhen Ma ◽  
Wei Jiang ◽  
Bi-Hui Liu ◽  
...  

ABSTRACT Sixteen different sequence types (STs) of Escherichia coli isolates from a commercial swine farm in China were confirmed to coharbor the carbapenem resistance gene bla NDM-5 and the colistin resistance gene mcr-1. Whole-genome sequencing revealed that bla NDM-5 and mcr-1 were located on a 46-kb IncX3 plasmid and a 32-kb IncX4 plasmid, respectively. The two plasmids can transfer together with a low fitness cost, which might explain the presence of various STs of E. coli coharboring bla NDM-5 and mcr-1.


2015 ◽  
Vol 59 (8) ◽  
pp. 5022-5025 ◽  
Author(s):  
Yanbin Liu ◽  
Yu Feng ◽  
Wenjing Wu ◽  
Yi Xie ◽  
Xiaohui Wang ◽  
...  

ABSTRACTWe report the first OXA-181-producing strain in China.blaOXA-181was found in sequence type 410 (ST410)Escherichia colistrain WCHEC14828 from a Chinese patient without recent travel history. Genome sequencing and conjugation experiments were performed.blaOXA-181was carried on a 51-kb self-transmissible IncX3 plasmid and was linked withqnrS1, a quinolone resistance gene.blaOXA-181was introduced onto the IncX3 plasmid from a ColE2-type plasmid, and IncX3 plasmids have the potential to mediate the dissemination ofblaOXA-181.


2018 ◽  
Vol 56 (4) ◽  
Author(s):  
Lorraine Eriksson ◽  
Sara Thulin Hedberg ◽  
Susanne Jacobsson ◽  
Hans Fredlund ◽  
Paula Mölling ◽  
...  

ABSTRACT Invasive disease caused by Neisseria meningitidis serogroup W (MenW) has historically had a low incidence in Sweden, with an average incidence of 0.03 case/100,000 population from 1995 to 2014. In recent years, a significant increase in the incidence of MenW has been noted in Sweden, to an average incidence of 0.15 case/100,000 population in 2015 to 2016. In 2017 (1 January to 30 June), 33% of invasive meningococcal disease cases (7/21 cases) were caused by MenW. In the present study, all invasive MenW isolates from Sweden collected in 1995 to June 2017 ( n = 86) were subjected to whole-genome sequencing to determine the population structure and to compare isolates from Sweden with historical and international cases. The increase of MenW in Sweden was determined to be due to isolates belonging to the South American sublineage of MenW clonal complex 11, namely, the novel U.K. 2013 lineage. This lineage was introduced in Sweden in 2013 and has since been the dominant lineage of MenW.


mBio ◽  
2019 ◽  
Vol 10 (6) ◽  
Author(s):  
Eike J. Steinig ◽  
Sebastian Duchene ◽  
D. Ashley Robinson ◽  
Stefan Monecke ◽  
Maho Yokoyama ◽  
...  

ABSTRACT The evolution and global transmission of antimicrobial resistance have been well documented for Gram-negative bacteria and health care-associated epidemic pathogens, often emerging from regions with heavy antimicrobial use. However, the degree to which similar processes occur with Gram-positive bacteria in the community setting is less well understood. In this study, we traced the recent origins and global spread of a multidrug-resistant, community-associated Staphylococcus aureus lineage from the Indian subcontinent, the Bengal Bay clone (ST772). We generated whole-genome sequence data of 340 isolates from 14 countries, including the first isolates from Bangladesh and India, to reconstruct the evolutionary history and genomic epidemiology of the lineage. Our data show that the clone emerged on the Indian subcontinent in the early 1960s and disseminated rapidly in the 1990s. Short-term outbreaks in community and health care settings occurred following intercontinental transmission, typically associated with travel and family contacts on the subcontinent, but ongoing endemic transmission was uncommon. Acquisition of a multidrug resistance integrated plasmid was instrumental in the emergence of a single dominant and globally disseminated clade in the early 1990s. Phenotypic data on biofilm, growth, and toxicity point to antimicrobial resistance as the driving force in the evolution of ST772. The Bengal Bay clone therefore combines the multidrug resistance of traditional health care-associated clones with the epidemiological transmission of community-associated methicillin-resistant S. aureus (MRSA). Our study demonstrates the importance of whole-genome sequencing for tracking the evolution of emerging and resistant pathogens. It provides a critical framework for ongoing surveillance of the clone on the Indian subcontinent and elsewhere. IMPORTANCE The Bengal Bay clone (ST772) is a community-associated and multidrug-resistant Staphylococcus aureus lineage first isolated from Bangladesh and India in 2004. In this study, we showed that the Bengal Bay clone emerged from a virulent progenitor circulating on the Indian subcontinent. Its subsequent global transmission was associated with travel or family contact in the region. ST772 progressively acquired specific resistance elements at limited cost to its fitness and continues to be exported globally, resulting in small-scale community and health care outbreaks. The Bengal Bay clone therefore combines the virulence potential and epidemiology of community-associated clones with the multidrug resistance of health care-associated S. aureus lineages. This study demonstrates the importance of whole-genome sequencing for the surveillance of highly antibiotic-resistant pathogens, which may emerge in the community setting of regions with poor antibiotic stewardship and rapidly spread into hospitals and communities across the world.


Sign in / Sign up

Export Citation Format

Share Document