scholarly journals Emergence of resistance to novel cephalosporin-β-lactamase inhibitor combinations through the modification of the Pseudomonas aeruginosa MexCD-OprJ efflux pump

Author(s):  
María A. Gomis-Font ◽  
Cristina Pitart ◽  
Ester del Barrio-Tofiño ◽  
Yuliya Zboromyrska ◽  
Sara Cortes-Lara ◽  
...  

A ceftolozane/tazobactam and ceftazime/avibactam resistant Pseudomonas aeruginosa isolate was recovered after treatment (including azithromycin, meropenem and ceftolozane/tazobactam) from a patient that had developed ventilator associated pneumonia after Covid-19 infection. Whole genome sequencing revealed that the strain, belonging to ST274, had acquired a nonsense mutation leading to a truncated carbapenem porin OprD (W277X), a 7-bp deletion (nt213Δ7) in NfxB (negative regulator of the efflux pump MexCD-OprJ), and two missense mutations (Q178R, S133G) located within the first Large Periplasmic Loop of MexD. Through the construction of mexD mutants and complementation assays with wild-type nfxB , it was evidenced that resistance to the novel cephalosporin-β-lactamase inhibitor combinations was caused by the modification of MexD substrate specificity.

2021 ◽  
Vol 9 (2) ◽  
pp. 388
Author(s):  
Marta Hernández-García ◽  
María García-Castillo ◽  
Sergio García-Fernández ◽  
Diego López-Mendoza ◽  
Jazmín Díaz-Regañón ◽  
...  

CrpP enzymes have been recently described as a novel ciprofloxacin-resistance mechanism. We investigated by whole genome sequencing the presence of crpP-genes and other mechanisms involved in quinolone resistance in MDR/XDR-Pseudomonas aeruginosa isolates (n = 55) with both ceftolozane-tazobactam susceptible or resistant profiles recovered from intensive care unit patients during the STEP (Portugal) and SUPERIOR (Spain) surveillance studies. Ciprofloxacin resistance was associated with mutations in the gyrA and parC genes. Additionally, plasmid-mediated genes (qnrS2 and aac(6′)-Ib-cr) were eventually detected. Ten chromosomal crpP-like genes contained in related pathogenicity genomic islands and 6 different CrpP (CrpP1-CrpP6) proteins were found in 65% (36/55) of the isolates. Dissemination of CrpP variants was observed among non-related clones of both countries, including the CC175 (Spain) high-risk clone and CC348 (Portugal) clone. Interestingly, 5 of 6 variants (CrpP1-CrpP5) carried missense mutations in an amino acid position (Gly7) previously defined as essential conferring ciprofloxacin resistance, and decreased ciprofloxacin susceptibility was only associated with the novel CrpP6 protein. In our collection, ciprofloxacin resistance was mainly due to chromosomal mutations in the gyrA and parC genes. However, crpP genes carrying mutations essential for protein function (G7, I26) and associated with a restored ciprofloxacin susceptibility were predominant. Despite the presence of crpP genes is not always associated with ciprofloxacin resistance, the risk of emergence of novel CrpP variants with a higher ability to affect quinolones is increasing. Furthermore, the spread of crpP genes in highly mobilizable genomic islands among related and non-related P. aeruginosa clones alert the dispersion of MDR pathogens in hospital settings.


2007 ◽  
Vol 51 (11) ◽  
pp. 3988-4000 ◽  
Author(s):  
Arnold Louie ◽  
David L. Brown ◽  
Weiguo Liu ◽  
Robert W. Kulawy ◽  
Mark R. Deziel ◽  
...  

ABSTRACT The prevalence of fluoroquinolone-resistant Streptococcus pneumoniae is slowly rising as a consequence of the increased use of fluoroquinolone antibiotics to treat community-acquired pneumonia. We tested the hypothesis that increased efflux pump (EP) expression by S. pneumoniae may facilitate the emergence of fluoroquinolone resistance. By using an in vitro pharmacodynamic infection system, a wild-type S. pneumoniae strain (Spn-058) and an isogenic strain with EP overexpression (Spn-RC2) were treated for 10 days with ciprofloxacin or levofloxacin in the presence or absence of the EP inhibitor reserpine to evaluate the effect of EP inhibition on the emergence of resistance. Cultures of Spn-058 and Spn-RC2 were exposed to concentration-time profiles simulating those in humans treated with a regimen of ciprofloxacin at 750 mg orally once every 12 h and with regimens of levofloxacin at 500 and 750 mg orally once daily (QD; with or without continuous infusions of 20 μg of reserpine/ml). The MICs of ciprofloxacin and levofloxacin for Spn-058 were both 1 μg/ml when susceptibility testing was conducted with each antibiotic alone and with each antibiotic in the presence of reserpine. For Spn-RC2, the MIC of levofloxacin alone and with reserpine was also 1 μg/ml; the MICs of ciprofloxacin were 2 and 1 μg/ml, respectively, when determined with ciprofloxacin alone and in combination with reserpine. Reserpine, alone, had no effect on the growth of Spn-058 and Spn-RC2. For Spn-058, simulated regimens of ciprofloxacin at 750 mg every 12 h or levofloxacin at 500 mg QD were associated with the emergence of fluoroquinolone resistance. However, the use of ciprofloxacin at 750 mg every 12 h and levofloxacin at 500 mg QD in combination with reserpine rapidly killed Spn-058 and prevented the emergence of resistance. For Spn-RC2, levofloxacin at 500 mg QD was associated with the emergence of resistance, but again, the resistance was prevented when this levofloxacin regimen was combined with reserpine. Ciprofloxacin at 750 mg every 12 h also rapidly selected for ciprofloxacin-resistant mutants of Spn-RC2. However, the addition of reserpine to ciprofloxacin therapy only delayed the emergence of resistance. Levofloxacin at 750 mg QD, with and without reserpine, effectively eradicated Spn-058 and Spn-RC2 without selecting for fluoroquinolone resistance. Ethidium bromide uptake and efflux studies demonstrated that, at the baseline, Spn-RC2 had greater EP expression than Spn-058. These studies also showed that ciprofloxacin was a better inducer of EP expression than levofloxacin in both Spn-058 and Spn-RC2. However, in these isolates, the increase in EP expression by short-term exposure to ciprofloxacin and levofloxacin was transient. Mutants of Spn-058 and Spn-RC2 that emerged under suboptimal antibiotic regimens had a stable increase in EP expression. Levofloxacin at 500 mg QD in combination with reserpine, an EP inhibitor, or at 750 mg QD alone killed wild-type S. pneumoniae and strains that overexpressed reserpine-inhibitable EPs and was highly effective in preventing the emergence of fluoroquinolone resistance in S. pneumoniae during therapy. Ciprofloxacin at 750 mg every 12 h, as monotherapy, was ineffective for the treatment of Spn-058 and Spn-RC2. Ciprofloxacin in combination with reserpine prevented the emergence of resistance in Spn-058 but not in Spn-RC2, the EP-overexpressing strain.


2009 ◽  
Vol 53 (6) ◽  
pp. 2266-2273 ◽  
Author(s):  
G. L. Drusano ◽  
Weiguo Liu ◽  
Christine Fregeau ◽  
Robert Kulawy ◽  
Arnold Louie

ABSTRACT The drug interaction terminology (synergy, additivity, antagonism) relates to bacterial kill. The suppression of resistance requires greater drug exposure. We examined the combination of meropenem and tobramycin for kill and resistance suppression (wild-type Pseudomonas aeruginosa PAO1 and its isogenic MexAB-overexpressed mutant). The drug interaction was additive. The introduction of MexAB overexpression significantly altered the 50% inhibitory concentration of meropenem but not that of tobramycin, resulting in the recovery of a marked increase in colony numbers from drug-containing plates. For the wild type, more tobramycin-resistant isolates than meropenem-resistant isolates were present, and the tobramycin-resistant isolates were harder to suppress. MexAB overexpression unexpectedly caused a significant increase in the number of tobramycin-resistant mutants, as indexed to the area under the curve of slices through the inverted U resistance mountain. The differences were significant, except in the absence of meropenem. We hypothesize that the pump resulted in the presence of less meropenem for organism inhibition, allowing more rounds of replication and also affecting the numbers of tobramycin-resistant mutants. When resistance suppression is explored by combination chemotherapy, it is important to examine the impacts of differing resistance mechanisms for both agents.


2002 ◽  
Vol 46 (11) ◽  
pp. 3370-3380 ◽  
Author(s):  
Dilek Ince ◽  
Xiamei Zhang ◽  
L. Christine Silver ◽  
David C. Hooper

ABSTRACT We determined the target enzyme interactions of garenoxacin (BMS-284756, T-3811ME), a novel desfluoroquinolone, in Staphylococcus aureus by genetic and biochemical studies. We found garenoxacin to be four- to eightfold more active than ciprofloxacin against wild-type S. aureus. A single topoisomerase IV or gyrase mutation caused only a 2- to 4-fold increase in the MIC of garenoxacin, whereas a combination of mutations in both loci caused a substantial increase (128-fold). Overexpression of the NorA efflux pump had minimal effect on resistance to garenoxacin. With garenoxacin at twice the MIC, selection of resistant mutants (<7.4 × 10−12 to 4.0 × 10−11) was 5 to 6 log units less than that with ciprofloxacin. Mutations inside or outside the quinolone resistance-determining regions (QRDR) of either topoisomerase IV, or gyrase, or both were selected in single-step mutants, suggesting dual targeting of topoisomerase IV and gyrase. Three of the novel mutations were shown by genetic experiments to be responsible for resistance. Studies with purified topoisomerase IV and gyrase from S. aureus also showed that garenoxacin had similar activity against topoisomerase IV and gyrase (50% inhibitory concentration, 1.25 to 2.5 and 1.25 μg/ml, respectively), and although its activity against topoisomerase IV was 2-fold greater than that of ciprofloxacin, its activity against gyrase was 10-fold greater. This study provides the first genetic and biochemical data supporting the dual targeting of topoisomerase IV and gyrase in S. aureus by a quinolone as well as providing genetic proof for the expansion of the QRDRs to include the 5′ terminus of grlB and the 3′ terminus of gyrA.


2001 ◽  
Vol 183 (18) ◽  
pp. 5213-5222 ◽  
Author(s):  
Thilo Köhler ◽  
Christian van Delden ◽  
Lasta Kocjancic Curty ◽  
Mehri Michea Hamzehpour ◽  
Jean-Claude Pechere

ABSTRACT Intrinsic and acquired antibiotic resistance of the nosocomial pathogen Pseudomonas aeruginosa is mediated mainly by the expression of several efflux pumps of broad substrate specificity. Here we report that nfxC type mutants, overexpressing the MexEF-OprN efflux system, produce lower levels of extracellular virulence factors than the susceptible wild type. These include pyocyanin, elastase, and rhamnolipids, three factors controlled by the las and rhl quorum-sensing systems of P. aeruginosa. In agreement with these observations are the decreased transcription of the elastase genelasB and the rhamnosyltransferase genesrhlAB measured in nfxC type mutants. Expression of the lasR and rhlR regulator genes was not affected in the nfxC type mutant. In contrast, transcription of the C4-homoserine lactone (C4-HSL) autoinducer synthase gene rhlI was reduced by 50% in the nfxC type mutant relative to that in the wild type. This correlates with a similar decrease in C4-HSL levels detected in supernatants of the nfxC type mutant. Transcription of an rhlAB-lacZ fusion could be partially restored by the addition of synthetic C4-HSL andPseudomonas quinolone signal (PQS). It is proposed that the MexEF-OprN efflux pump affects intracellular PQS levels.


Author(s):  
Patricia J Simner ◽  
Stephan Beisken ◽  
Yehudit Bergman ◽  
Andreas E Posch ◽  
Sara E Cosgrove ◽  
...  

Abstract Objective Mutations in the AmpC-AmpR region are associated with treatment-emergent ceftolozane-tazobactam (TOL-TAZ) and ceftazidime-avibactam (CAZ-AVI) resistance. We sought to determine if these mutations impact susceptibility to the novel cephalosporin-siderophore compound cefiderocol. Methods Thirty-two paired isolates from 16 patients with index P. aeruginosa isolates susceptible to TOL-TAZ and subsequent P. aeruginosa isolates available after TOL-TAZ exposure from January 2019 to December 2020 were included. TOL-TAZ, CAZ-AVI, imipenem-relebactam (IMI-REL), and cefiderocol minimum inhibitory concentrations (MICs) were determined using broth microdilution. Whole genome sequencing of paired isolates was used to identify mechanisms of resistance to cefiderocol that emerged, focusing on putative mechanisms of resistance to cefiderocol or earlier siderophore-antibiotic conjugates based on the previously published literature. Results Analyzing the 16 pairs of P. aeruginosa isolates, ≥4-fold increases in cefiderocol MICs occurred in 4 of 16 isolates. Cefiderocol non-susceptibility criteria was met for only 1 of the 4 isolates, using Clinical and Laboratory Standards Institute criteria. Specific mechanisms identified included the following: AmpC E247K (2 isolates), MexR A66V and L57D (1 isolate each), and AmpD G116D (1 isolate) substitutions. For both isolates with AmpC E247K mutations, ≥4-fold MIC increases occurred for both TOL-TAZ and CAZ-AVI, while a ≥4-fold reduction in IMI-REL MICs was observed. Conclusions Our findings suggest that alterations in the target binding sites of P. aeruginosa derived AmpC β-lactamases have the potential to reduce the activity of three of four novel β-lactams (i.e., ceftolozane-tazobactam, ceftazidime-avibactam, and cefiderocol) and potentially increase susceptibility to imipenem-relebactam. These findings are in need of validation in a larger cohort.


2017 ◽  
Vol 61 (8) ◽  
Author(s):  
Clayton W. Hall ◽  
Li Zhang ◽  
Thien-Fah Mah

ABSTRACT The tssABC1 locus is part of the Hcp secretion island I (HSI-I) type VI secretion system (T6SS) in Pseudomonas aeruginosa. Previous work implicated the tssC1 gene in P. aeruginosa biofilm-specific antibiotic resistance, and tssC1 is preferentially expressed in biofilms compared to planktonic cells. Using a DNA-dependent protein pulldown approach, we discovered that PA3225, an uncharacterized LysR-type transcriptional regulator, specifically bound to the tssABC1 upstream regulatory region. The deletion of PA3225 led to a 2-fold decrease in tssA1 expression levels in planktonic cells compared to the wild type, and tssA1 expression was slightly reduced in ΔPA3225 biofilms compared to wild-type biofilms. Intriguingly, further investigations revealed that the ΔPA3225 mutant was less susceptible to multiple, structurally unrelated antibiotics with various mechanisms of action when grown planktonically. The ΔPA3225 mutant was additionally more resistant to ciprofloxacin when grown in a biofilm. The decreased antibiotic susceptibility of the ΔPA3225 strain was linked to the transcriptional upregulation of the MexAB-OprM efflux pump. By using transcriptome sequencing (RNA-seq), other PA3225-regulated genes were identified, and the products of these genes, such as the putative ABC transporter PA3228, may also contribute to antibiotic resistance.


1998 ◽  
Vol 42 (12) ◽  
pp. 3296-3300 ◽  
Author(s):  
Taimour Yousef Langaee ◽  
Michèle Dargis ◽  
Ann Huletsky

ABSTRACT The ampD and ampE genes ofPseudomonas aeruginosa PAO1 were cloned and characterized. These genes are transcribed in the same orientation and form an operon. The deduced polypeptide of P. aeruginosa ampD exhibited more than 60% similarity to the AmpD proteins of enterobacteria andHaemophilus influenzae. The ampD product transcomplemented Escherichia coli ampD mutants to wild-type β-lactamase expression.


2017 ◽  
Vol 61 (9) ◽  
Author(s):  
Pablo A. Fraile-Ribot ◽  
Xavier Mulet ◽  
Gabriel Cabot ◽  
Ester del Barrio-Tofiño ◽  
Carlos Juan ◽  
...  

ABSTRACT Resistance development to novel cephalosporin–β-lactamase inhibitor combinations during ceftazidime treatment of a surgical infection by Pseudomonas aeruginosa was investigated. Both initial (97C2) and final (98G1) isolates belonged to the high-risk clone sequence type (ST) 235 and were resistant to carbapenems (oprD), fluoroquinolones (GyrA-T83I, ParC-S87L), and aminoglycosides (aacA7/aacA8/aadA6). 98G1 also showed resistance to ceftazidime, ceftazidime-avibactam, and ceftolozane-tazobactam. Sequencing identified bla OXA-2 in 97C2, but 98G1 contained a 3-bp insertion leading to the duplication of the key residue D149 (designated OXA-539). Evaluation of PAO1 transformants producing cloned OXA-2 or OXA-539 confirmed that D149 duplication was the cause of resistance. Active surveillance of the emergence of resistance to these new valuable agents is warranted.


Sign in / Sign up

Export Citation Format

Share Document