scholarly journals The Plasmid-Mediated Kluyvera-Like arnBCADTEF Operon Confers Colistin (Hetero)Resistance to Escherichia coli

2021 ◽  
Vol 65 (5) ◽  
Author(s):  
Alejandro Gallardo ◽  
María-Rocío Iglesias ◽  
María Ugarte-Ruiz ◽  
Marta Hernández ◽  
Pedro Miguela-Villoldo ◽  
...  

ABSTRACT The use of colistin as a last-resort antimicrobial is compromised by the emergence of resistant enterobacteria with acquired determinants like mcr genes, mutations that activate the PmrAB system, or still unknown mechanisms. This work analyzed 74 Escherichia coli isolates from healthy swine, turkey, or bovine, characterizing their colistin resistance determinants. The mcr-1 gene, detected in 69 isolates, was the main determinant found, among which 45% carried this gene on highly mobile plasmids, followed by 4 strains lacking previously known resistance determinants or 2 with mcr-4 (1 in addition to mcr-1), whose phenotypes were not transferred by conjugation. Although a fraction of isolates carrying mcr-1 or mcr-4 genes also presented missense polymorphisms in pmrA or pmrB, constitutive activation of PmrAB was not detected, in contrast to strains with mutations that confer colistin resistance. The expression of mcr genes negatively controls the transcription of the arnBCADTEF operon itself, a downregulation that was also observed in the four isolates lacking known resistance determinants, with three of them sharing the same macrorestriction and plasmid profiles. Genomic sequencing of one of these strains, isolated from a bovine in 2015, revealed an IncFII plasmid of 62.1 kb carrying an extra copy of the arnBCADTEF operon closely related to Kluyvera ascorbata homologs. This element, called pArnT1, was cured by ethidium bromide, and the cells lost resistance to colistin in parallel. Furthermore, a susceptible E. coli strain acquired heteroresistance after transformation with pArnT1 or pBAD24 carrying the Kluyvera-like arnBCADTEF operon, revealing it as a new colistin resistance determinant.

mBio ◽  
2018 ◽  
Vol 9 (4) ◽  
Author(s):  
Yingbo Shen ◽  
Zuowei Wu ◽  
Yang Wang ◽  
Rong Zhang ◽  
Hong-Wei Zhou ◽  
...  

ABSTRACTThe recent emergence of a transferable colistin resistance mechanism, MCR-1, has gained global attention because of its threat to clinical treatment of infections caused by multidrug-resistant Gram-negative bacteria. However, the possible transmission route ofmcr-1amongEnterobacteriaceaespecies in clinical settings is largely unknown. Here, we present a comprehensive genomic analysis ofEscherichia coliisolates collected in a hospital in Hangzhou, China. We found thatmcr-1-carrying isolates from clinical infections and feces of inpatients and healthy volunteers were genetically diverse and were not closely related phylogenetically, suggesting that clonal expansion is not involved in the spread ofmcr-1. Themcr-1gene was found on either chromosomes or plasmids, but in most of theE. coliisolates,mcr-1was carried on plasmids. The genetic context of the plasmids showed considerable diversity as evidenced by the different functional insertion sequence (IS) elements, toxin-antitoxin (TA) systems, heavy metal resistance determinants, and Rep proteins of broad-host-range plasmids. Additionally, the genomic analysis revealed nosocomial transmission ofmcr-1and the coexistence ofmcr-1with other genes encoding β-lactamases and fluoroquinolone resistance in theE. coliisolates. These findings indicate thatmcr-1is heterogeneously disseminated in both commensal and pathogenic strains ofE. coli, suggest the high flexibility of this gene in its association with diverse genetic backgrounds of the hosts, and provide new insights into the genome epidemiology ofmcr-1among hospital-associatedE. colistrains.IMPORTANCEColistin represents one of the very few available drugs for treating infections caused by extensively multidrug-resistant Gram-negative bacteria. The recently emergentmcr-1colistin resistance gene threatens the clinical utility of colistin and has gained global attention. Howmcr-1spreads in hospital settings remains unknown and was investigated by whole-genome sequencing ofmcr-1-carryingEscherichia coliin this study. The findings revealed extraordinary flexibility ofmcr-1in its spread among genetically diverseE. colihosts and plasmids, nosocomial transmission ofmcr-1-carryingE. coli, and the continuous emergence of novel Inc types of plasmids carryingmcr-1and newmcr-1variants. Additionally,mcr-1was found to be frequently associated with other genes encoding β-lactams and fluoroquinolone resistance. These findings provide important information on the transmission and epidemiology ofmcr-1and are of significant public health importance as the information is expected to facilitate the control of this significant antibiotic resistance threat.


2019 ◽  
Vol 58 (3) ◽  
Author(s):  
Edgar Gonzales Escalante ◽  
Katherine Yauri Condor ◽  
Jose A. Di Conza ◽  
Gabriel O. Gutkind

ABSTRACT The aim of this work was to evaluate an easy-to-perform assay based upon inhibition of mobile colistin resistance (MCR) activity by EDTA. We included 92 nonrelated isolates of Enterobacteriaceae (74 Escherichia coli, 17 Klebsiella pneumoniae, and 1 Serratia marcescens). Our proposed method is based on a modification of the colistin agar-spot screening test (CAST), a plate containing 3 μg/ml colistin, by adding an extra plate of colistin agar-spot supplemented with EDTA (eCAST). Bacterial growth was evaluated after 24 h of incubation at 35°C. All the colistin-resistant isolates showed development on the CAST plates. Colistin-resistant K. pneumoniae without mcr-1 and S. marcescens also grew on the eCAST plates. In contrast, colistin-resistant MCR-producing E. coli was not able to grow in eCAST plates. The combined CAST/eCAST test could provide a simple and easy-to-perform method to differentiate MCR-producing Enterobacteriaceae from those in which colistin resistance is mediated by chromosomal mechanisms.


2016 ◽  
Vol 61 (2) ◽  
Author(s):  
Bao-Tao Liu ◽  
Feng-Jing Song ◽  
Ming Zou ◽  
Zhi-Hui Hao ◽  
Hu Shan

ABSTRACT We report the presence of mcr-1 in Escherichia coli and carbapenem-resistant Cronobacter sakazakii from the same diseased chicken. The mcr-1 gene linked with ISApl1 was located on two different IncI2 plasmids, including one multidrug plasmid in E. coli, whereas fosA3-bla NDM-9 was on an IncB/O plasmid in C. sakazakii. The development of the fosA3-bla NDM-9 resistance region was mediated by IS26. The colocation of mcr-1 or bla NDM-9 with other resistance genes will accelerate the dissemination of the two genes.


2011 ◽  
Vol 55 (9) ◽  
pp. 4224-4229 ◽  
Author(s):  
Laurent Poirel ◽  
Rémy A. Bonnin ◽  
Patrice Nordmann

ABSTRACTThe resistome of the multidrug-resistantEscherichia colistrain 271 carrying the plasmid-mediatedblaNDM-1carbapenemase gene was analyzed by high-throughput genome sequencing. The p271A plasmid carrying theblaNDM-1gene was 35.9 kb in size and possessed an IncN-type backbone that harbored a novel replicase gene. Acquisition of theblaNDM-1gene on plasmid p271A had been likely the result of a cointegration event involving the transposase of Tn5403. The expression ofblaNDM-1was associated with the insertion sequence ISAba125likely originating fromAcinetobacter baumannii. E. coli271 accumulated multiple resistance determinants, including five β-lactamase genes (comprising the extended-spectrum β-lactamase CTX-M-15), two 16S RNA methylase ArmA- and RmtB-encoding genes, and theqepAgene encoding an efflux pump involved in resistance to fluoroquinolones. These resistance genes were located on three additional plasmids, of 160 kb (IncA/C), 130 kb (IncF), and 110 kb (IncI1). In addition, several chromosomally encoded resistance determinants were identified, such as topoisomerase mutations, porin modifications and truncations, and the intrinsicampCgene ofE. colithat was weakly expressed. The multidrug resistance pattern observed forE. coli271 was therefore the result of combined chromosome- and plasmid-encoded mechanisms.


mSphere ◽  
2018 ◽  
Vol 3 (5) ◽  
Author(s):  
Brian M. Forde ◽  
Hosam M. Zowawi ◽  
Patrick N. A. Harris ◽  
Leah Roberts ◽  
Emad Ibrahim ◽  
...  

ABSTRACTResistance to last-line polymyxins mediated by the plasmid-borne mobile colistin resistance gene (mcr-1) represents a new threat to global human health. Here we present the complete genome sequence of anmcr-1-positive multidrug-resistantEscherichia colistrain (MS8345). We show that MS8345 belongs to serotype O2:K1:H4, has a large 241,164-bp IncHI2 plasmid that carries 15 other antibiotic resistance genes (including the extended-spectrum β-lactamaseblaCTX-M-1) and 3 putative multidrug efflux systems, and contains 14 chromosomally encoded antibiotic resistance genes. MS8345 also carries a large ColV-like virulence plasmid that has been associated withE. colibacteremia. Whole-genome phylogeny revealed that MS8345 clusters within a discrete clade in the sequence type 95 (ST95) lineage, and MS8345 is very closely related to the highly virulent O45:K1:H4 clone associated with neonatal meningitis. Overall, the acquisition of a plasmid carrying resistance to colistin and multiple other antibiotics in this virulentE. colilineage is concerning and might herald an era where the empirical treatment of ST95 infections becomes increasingly more difficult.IMPORTANCEEscherichia coliST95 is a globally disseminated clone frequently associated with bloodstream infections and neonatal meningitis. However, the ST95 lineage is defined by low levels of drug resistance amongst clinical isolates, which normally provides for uncomplicated treatment options. Here, we provide the first detailed genomic analysis of anE. coliST95 isolate that has both high virulence potential and resistance to multiple antibiotics. Using the genome, we predicted its virulence and antibiotic resistance mechanisms, which include resistance to last-line antibiotics mediated by the plasmid-bornemcr-1gene. Finding an ST95 isolate resistant to nearly all antibiotics that also has a high virulence potential is of major clinical importance and underscores the need to monitor new and emerging trends in antibiotic resistance development in this important global lineage.


2020 ◽  
Vol 65 (1) ◽  
pp. e01172-20 ◽  
Author(s):  
Yu-Feng Zhou ◽  
Ping Liu ◽  
Shu-He Dai ◽  
Jian Sun ◽  
Ya-Hong Liu ◽  
...  

ABSTRACTAlternative therapeutic options are urgently needed against multidrug-resistant Escherichia coli infections, especially in situations of preexisting tigecycline and colistin resistance. Here, we investigated synergistic activity of the antiretroviral drug zidovudine in combination with tigecycline or colistin against E. coli harboring tet(X) and mcr-1 in vitro and in a murine thigh infection model. Zidovudine and tigecycline/colistin combinations achieved synergistic killing and significantly decreased bacterial burdens by >2.5-log10 CFU/g in thigh tissues compared to each monotherapy.


mSphere ◽  
2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Axel B. Janssen ◽  
Toby L. Bartholomew ◽  
Natalia P. Marciszewska ◽  
Marc J. M. Bonten ◽  
Rob J. L. Willems ◽  
...  

ABSTRACT Infections by multidrug-resistant Gram-negative bacteria are increasingly common, prompting the renewed interest in the use of colistin. Colistin specifically targets Gram-negative bacteria by interacting with the anionic lipid A moieties of lipopolysaccharides, leading to membrane destabilization and cell death. Here, we aimed to uncover the mechanisms of colistin resistance in nine colistin-resistant Escherichia coli strains and one Escherichia albertii strain. These were the only colistin-resistant strains of 1,140 bloodstream Escherichia isolates collected in a tertiary hospital over a 10-year period (2006 to 2015). Core-genome phylogenetic analysis showed that each patient was colonized by a unique strain, suggesting that colistin resistance was acquired independently in each strain. All colistin-resistant strains had lipid A that was modified with phosphoethanolamine. In addition, two E. coli strains had hepta-acylated lipid A species, containing an additional palmitate compared to the canonical hexa-acylated E. coli lipid A. One E. coli strain carried the mobile colistin resistance (mcr) gene mcr-1.1 on an IncX4-type plasmid. Through construction of chromosomal transgene integration mutants, we experimentally determined that mutations in basRS, encoding a two-component signal transduction system, contributed to colistin resistance in four strains. We confirmed these observations by reversing the mutations in basRS to the sequences found in reference strains, resulting in loss of colistin resistance. While the mcr genes have become a widely studied mechanism of colistin resistance in E. coli, sequence variation in basRS is another, potentially more prevalent but relatively underexplored, cause of colistin resistance in this important nosocomial pathogen. IMPORTANCE Multidrug resistance among Gram-negative bacteria has led to the use of colistin as a last-resort drug. The cationic colistin kills Gram-negative bacteria through electrostatic interaction with the anionic lipid A moiety of lipopolysaccharides. Due to increased use in clinical and agricultural settings, colistin resistance has recently started to emerge. In this study, we used a combination of whole-genome sequence analysis and experimental validation to characterize the mechanisms through which Escherichia coli strains from bloodstream infections can develop colistin resistance. We found no evidence of direct transfer of colistin-resistant isolates between patients. The lipid A of all isolates was modified by the addition of phosphoethanolamine. In four isolates, colistin resistance was experimentally verified to be caused by mutations in the basRS genes, encoding a two-component regulatory system. Our data show that chromosomal mutations are an important cause of colistin resistance among clinical E. coli isolates.


2016 ◽  
Vol 60 (5) ◽  
pp. 2972-2980 ◽  
Author(s):  
Masato Akiba ◽  
Tsuyoshi Sekizuka ◽  
Akifumi Yamashita ◽  
Makoto Kuroda ◽  
Yuki Fujii ◽  
...  

ABSTRACTTo determine the distribution and relationship of antimicrobial resistance determinants among extended-spectrum-cephalosporin (ESC)-resistant or carbapenem-resistantEscherichia coliisolates from the aquatic environment in India, water samples were collected from rivers or sewage treatment plants in five Indian states. A total of 446E. coliisolates were randomly obtained. Resistance to ESC and/or carbapenem was observed in 169 (37.9%)E. coliisolates, which were further analyzed. These isolates showed resistance to numerous antimicrobials; more than half of the isolates exhibited resistance to eight or more antimicrobials. TheblaNDMgene was detected in 14/21 carbapenem-resistantE. coliisolates:blaNDM-1in 2 isolates,blaNDM-5in 7 isolates, andblaNDM-7in 5 isolates. TheblaCTX-Mgene was detected in 112 isolates (66.3%):blaCTX-M-15in 108 isolates andblaCTX-M-55in 4 isolates. We extracted 49 plasmids from selected isolates, and their whole-genome sequences were determined. Fifty resistance genes were detected, and 11 different combinations of replicon types were observed among the 49 plasmids. The network analysis results suggested that the plasmids sharing replicon types tended to form a community, which is based on the predicted gene similarity among the plasmids. Four communities each containing from 4 to 17 plasmids were observed. Three of the four communities contained plasmids detected in different Indian states, suggesting that the interstate dissemination of ancestor plasmids has already occurred. Comparison of the DNA sequences of theblaNDM-positive plasmids detected in this study with known sequences of related plasmids suggested that various mutation events facilitated the evolution of the plasmids and that plasmids with similar genetic backgrounds have widely disseminated in India.


2014 ◽  
Vol 58 (12) ◽  
pp. 7548-7552 ◽  
Author(s):  
Ping Yang ◽  
Yi Xie ◽  
Ping Feng ◽  
Zhiyong Zong

ABSTRACTblaNDM-5was found inEscherichia colistrain 0215 from a Chinese patient without travel history. Genomic sequencing and conjugation experiments were performed. Strain 0215 belonged to sequence type 167 (ST167) and had other resistance determinants, includingblaTEM-135,blaCTX-M-14, andaac(6′)-Ib. blaNDM-5was carried by a 47-kb self-transmissible IncX3 plasmid and was in a complex genetic context similar to that ofblaNDM-1on IncX3 plasmids. IncX3 plasmids might have emerged as a common vehicle mediating the spread ofblaNDM.


Microbiology ◽  
2021 ◽  
Vol 167 (11) ◽  
Author(s):  
Madeleine Humphrey ◽  
Gerald J. Larrouy-Maumus ◽  
R. Christopher D. Furniss ◽  
Despoina A. I. Mavridou ◽  
Akshay Sabnis ◽  
...  

Colistin is a polymyxin antibiotic of last resort for the treatment of infections caused by multi-drug-resistant Gram-negative bacteria. By targeting lipopolysaccharide (LPS), the antibiotic disrupts both the outer and cytoplasmic membranes, leading to bacterial death and lysis. Colistin resistance in Escherichia coli occurs via mutations in the chromosome or the acquisition of mobilized colistin-resistance (mcr) genes. Both these colistin-resistance mechanisms result in chemical modifications to the LPS, with positively charged moieties added at the cytoplasmic membrane before the LPS is transported to the outer membrane. We have previously shown that MCR-1-mediated LPS modification protects the cytoplasmic but not the outer membrane from damage caused by colistin, enabling bacterial survival. However, it remains unclear whether this observation extends to colistin resistance conferred by other mcr genes, or resistance due to chromosomal mutations. Using a panel of clinical E. coli that had acquired mcr −1, –1.5, −2, –3, −3.2 or −5, or had acquired polymyxin resistance independently of mcr genes, we found that almost all isolates were susceptible to colistin-mediated permeabilization of the outer, but not cytoplasmic, membrane. Furthermore, we showed that permeabilization of the outer membrane of colistin-resistant isolates by the polymyxin is in turn sufficient to sensitize bacteria to the antibiotic rifampicin, which normally cannot cross the LPS monolayer. These findings demonstrate that colistin resistance in these E. coli isolates is due to protection of the cytoplasmic but not outer membrane from colistin-mediated damage, regardless of the mechanism of resistance.


Sign in / Sign up

Export Citation Format

Share Document