scholarly journals Pharmacodynamics of Cefepime Combined with Tazobactam against Clinically Relevant Enterobacteriaceae in a Neutropenic Mouse Thigh Model

2017 ◽  
Vol 61 (9) ◽  
Author(s):  
Maria J. Melchers ◽  
Anita C. van Mil ◽  
Claudia Lagarde ◽  
Jan den Hartigh ◽  
Johan W. Mouton

ABSTRACT The lack of new antibiotics has prompted investigation of the combination of two existing agents—cefepime, a broad-spectrum cephalosporin, and tazobactam—to broaden their efficacy against extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae. We determined the pharmacokinetic (PK) and pharmacodynamic (PD) properties of the combination in a murine neutropenic thigh model in order to establish its exposure-response relationships (ERRs). The PK of cefepime were determined for five doses; that of tazobactam was determined in earlier studies (Melchers et al., Antimicrob Agents Chemother 59:3373–3376, 2015, https://doi.org/10.1128/AAC.04402-14 ). The PK were linear for both compounds. The estimated mean (standard deviation [SD]) half-life of cefepime was 0.33 (0.12) h, and that of tazobactam was 0.176 (0.026) h; the volumes of distribution (V) were 0.73 liters/kg and 1.14 liters/kg, respectively. PD studies of cefepime administered every 2 h (q2h) with or without tazobactam, including dose fractionation studies of tazobactam, were performed against six ESBL-producing isolates. A sigmoidal maximum-effect (E max) model was fitted to the data. In the dose fractionation study, the q2h regimen was more efficacious than the q4h and q6h regimens, indicating time-dependent activity of tazobactam. The threshold concentration (CT ) best correlating with tazobactam efficacy was 0.25 mg/liter, as evidenced by the best fit of the percentage of time above the threshold concentration (%fT>CT ) and response. A mean %fT>CT of 24.6% (range, 11.4 to 36.3%) for a CT of 0.25 mg/liter was required to obtain a bacteriostatic effect. We conclude that tazobactam enhanced the effect of cefepime in otherwise resistant isolates of Enterobacteriaceae and that the %fT>CT of 0.25 mg/liter best correlated with efficacy. These studies provide the basis for the development of human dosing regimens for this combination.

2014 ◽  
Vol 59 (2) ◽  
pp. 790-795 ◽  
Author(s):  
Eleftheria Mavridou ◽  
Ria J. B. Melchers ◽  
Anita C. H. A. M. van Mil ◽  
E. Mangin ◽  
Mary R. Motyl ◽  
...  

ABSTRACTMK7655 is a newly developed beta-lactamase inhibitor of class A and class C carbapenemases. Pharmacokinetics (PK) of imipenem-cilastatin (IMP/C) and MK7655 were determined for intraperitoneal doses of 4 mg/kg to 128 mg/kg of body weight. MIC and pharmacodynamics (PD) studies of MK7655 were performed against several beta-lactamase producingPseudomonas aeruginosaandKlebsiella pneumoniaestrains to determine its effectin vitroandin vivo. Neutropenic mice were infected in each thigh 2 h before treatment with an inoculum of approximately 5 × 106CFU. They were treated with IMP/C alone (every 2 hours [q2h], various doses) or in combination with MK7655 in either a dose fractionation study or q2h for 24 h and sacrificed for CFU determinations. IMP/MK7655 decreased MICs regarding IMP MIC. The PK profiles of IMP/C and MK7655 were linear over the dosing range studied and comparable with volumes of distribution (V) of 0.434 and 0.544 liter/kg and half-lives (t1/2) of 0.24 and 0.25 h, respectively. Protein binding of MK7655 was 20%. A sigmoidal maximum effect (Emax) model was fit to the PK/PD index responses. The effect of the inhibitor was not related to the maximum concentration of drug in serum (Cmax)/MIC, and model fits forT>MICand area under the concentration-time curve (AUC)/MIC were comparable (R2of 0.7 and 0.75), but there appeared to be no significant relationship of effect with dose frequency. Escalating doses of MK7655 and IMP/C showed that the AUC of MK7655 required for a static effect was dependent on the dose of IMP/C and the MIC of the strain, with a mean area under the concentration-time curve for the free, unbound fraction of the drug (fAUC) of 26.0 mg · h/liter. MK7655 shows significant activityin vivoand results in efficacy of IMP/C in otherwise resistant strains. The exposure-response relationships found can serve as a basis for establishing dosing regimens in humans.


2015 ◽  
Vol 60 (2) ◽  
pp. 1114-1120 ◽  
Author(s):  
Chunna Guo ◽  
Xiaoping Liao ◽  
Mingru Wang ◽  
Feng Wang ◽  
Chaoqun Yan ◽  
...  

ABSTRACTStreptococcus suisserotype 2 is an emerging zoonotic pathogen and causes severe disease in both pigs and human beings. Cefquinome (CEQ), a fourth-generation cephalosporin, exhibits broad-spectrum activity against Gram-positive bacteria such asS. suis. This study evaluated thein vitroandin vivoantimicrobial activities of CEQ against four strains ofS. suisserotype 2 in a murine neutropenic thigh infection model. We investigated the effect of varied inoculum sizes (106to 108CFU/thigh) on the pharmacokinetic (PK)/pharmacodynamic (PD) indices and magnitudes of a particular PK/PD index or dose required for efficacy. Dose fractionation studies included total CEQ doses ranging from 0.625 to 640 mg/kg/24 h. Data were analyzed via a maximum effect (Emax) model using nonlinear regression. The PK/PD studies demonstrated that the percentage of time that serum drug levels were above the MIC of free drug (%ƒT>MIC) in a 24-h dosing interval was the primary index driving the efficacy of both inoculum sizes (R2= 91% andR2= 63%). CEQ doses of 2.5 and 40 mg/kg body weight produced prolonged postantibiotic effects (PAEs) of 2.45 to 8.55 h. Inoculum sizes had a significant influence on CEQ efficacy. Compared to the CEQ exposure and dosages in tests using standard inocula, a 4-fold dose (P= 0.006) and a 2-fold exposure time (P= 0.01) were required for a 1-log kill using large inocula of 108CFU/thigh.


2016 ◽  
Vol 60 (7) ◽  
pp. 3891-3896 ◽  
Author(s):  
Brian D. VanScoy ◽  
Michael Trang ◽  
Jennifer McCauley ◽  
Haley Conde ◽  
Sujata M. Bhavnani ◽  
...  

ABSTRACTThe usefulness of β-lactam antimicrobial agents is threatened as never before by β-lactamase-producing bacteria. For this reason, there has been renewed interest in the development of broad-spectrum β-lactamase inhibitors. Herein we describe the results of dose fractionation and dose-ranging studies carried out using a one-compartmentin vitroinfection model to determine the exposure measure for CB-618, a novel β-lactamase inhibitor, most predictive of the efficacy when given in combination with meropenem. The challenge panel includedEnterobacteriaceaeclinical isolates, which collectively produced a wide range of β-lactamase enzymes (KPC-2, KPC-3, FOX-5, OXA-48, SHV-11, SHV-27, and TEM-1). Human concentration-time profiles were simulated for each drug, and samples were collected for drug concentration and bacterial density determinations. Using data from dose fractionation studies and a challengeKlebsiella pneumoniaeisolate (CB-618-potentiated meropenem MIC = 1 mg/liter), relationships between change from baseline in log10CFU/ml at 24 h and each of CB-618 area under the concentration-time curve over 24 h (AUC0–24), maximum concentration (Cmax), and percentage of the dosing interval that CB-618 concentrations remained above a given threshold were evaluated in combination with meropenem at 2 g every 8 h (q8h). The exposure measures most closely associated with CB-618 efficacy in combination with meropenem were the CB-618 AUC0–24(r2= 0.835) andCmax(r2= 0.826). Using the CB-618 AUC0–24indexed to the CB-618-potentiated meropenem MIC value, the relationship between change from baseline in log10CFU/ml at 24 h and CB-618 AUC0–24/MIC ratio in combination with meropenem was evaluated using the pooled data from five challenge isolates; the CB-618 AUC0–24/MIC ratio associated with net bacterial stasis and the 1- and 2-log10CFU/ml reductions from baseline at 24 h were 27.3, 86.1, and 444.8, respectively. These data provide a pharmacokinetics-pharmacodynamics (PK-PD) basis for evaluating potential CB-618 dosing regimens in combination with meropenem in future studies.


2012 ◽  
Vol 56 (11) ◽  
pp. 5916-5922 ◽  
Author(s):  
Alexander J. Lepak ◽  
Karen Marchillo ◽  
Solen Pichereau ◽  
William A. Craig ◽  
David R. Andes

ABSTRACTTedizolid phosphate (TR-701) is a novel oxazolidinone prodrug (converted to the active form tedizolid [TR-700]) with potentStaphylococcus aureusactivity. The current studies characterized and compared thein vivopharmacokinetic/pharmacodynamic (PD) characteristics of TR-701/TR-700 and linezolid against methicillin-susceptibleS. aureus(MSSA) and methicillin-resistantS. aureus(MRSA) in the neutropenic murine pneumonia model. The pharmacokinetic properties of both drugs were linear over a dose range of 0.625 to 40 mg/kg of body weight. Protein binding was 30% for linezolid and 85% for TR-700. Mice were infected with one of 11 isolates ofS. aureus, including MSSA and community- and hospital-acquired MRSA strains. Each drug was administered by oral-gastric gavage every 12 h (q12h). The dosing regimens ranged from 1.25 to 80 mg/kg/12 h for linezolid and 0.625 to 160 mg/kg/12 h for TR-701. At the start of therapy, mice had 6.24 ± 0.40 log10CFU/lungs, which increased to 7.92 ± 1.02 log10CFU/lungs in untreated animals over a 24-h period. A sigmoid maximum-effect (Emax) model was used to determine the antimicrobial exposure associated with net stasis (static dose [SD]) and 1-log-unit reduction in organism relative to the burden at the start of therapy. The static dose pharmacodynamic targets for linezolid and TR-700 were nearly identical, at a free drug (non-protein-bound) area under the concentration-time curve over 24 h in the steady state divided by the MIC (AUC/MIC ratio) of 19 and 20, respectively. The 1-log-unit kill endpoints were also similar, at 46.1 for linezolid and 34.6 for TR-700. The exposure targets were also comparable for both MSSA and MRSA isolates. These dosing goals support further clinical trial examination of TR-701 in MSSA and MRSA pneumonia.


2015 ◽  
Vol 60 (1) ◽  
pp. 368-375 ◽  
Author(s):  
Johanna Berkhout ◽  
Maria J. Melchers ◽  
Anita C. van Mil ◽  
Seyedmojtaba Seyedmousavi ◽  
Claudia M. Lagarde ◽  
...  

ABSTRACTAvibactam is a new non-β-lactam β-lactamase inhibitor that shows promising restoration of ceftazidime activity against microorganisms producing Ambler class A extended-spectrum β-lactamases (ESBLs) and carbapenemases such as KPCs, class C β-lactamases (AmpC), and some class D enzymes. To determine optimal dosing combinations of ceftazidime-avibactam for treating infections with ceftazidime-resistantPseudomonas aeruginosa, pharmacodynamic responses were explored in murine neutropenic thigh and lung infection models. Exposure-response relationships for ceftazidime monotherapy were determined first. Subsequently, the efficacy of adding avibactam every 2 h (q2h) or q8h to a fixed q2h dose of ceftazidime was determined in lung infection for two strains. Dosing avibactam q2h was significantly more efficacious, reducing the avibactam daily dose for static effect by factors of 2.7 and 10.1, whereas the mean percentage of the dosing interval that free drug concentrations remain above the threshold concentration of 1 mg/liter (%fT>CT1 mg/liter) yielding bacteriostasis was similar for both regimens, with mean values of 21.6 (q2h) and 18.5 (q8h). Dose fractionation studies of avibactam in both the thigh and lung models indicated that the effect of avibactam correlated well with %fT>CT1 mg/liter. This parameter of avibactam was further explored for fourP. aeruginosastrains in the lung model and six in the thigh model. Parameter estimates of %fT>CT1 mg/liter for avibactam ranged from 0 to 21.4% in the lung model and from 14.1 to 62.5% in the thigh model to achieve stasis. In conclusion, addition of avibactam enhanced the effect of ceftazidime, which was more pronounced at frequent dosing and well related with %fT>CT1 mg/liter. The thigh model appeared more stringent, with higher values, ranging up to 62.5%fT>CT1 mg/liter, required for a static effect.


2019 ◽  
Vol 63 (7) ◽  
Author(s):  
Kamilia Abdelraouf ◽  
Sean M. Stainton ◽  
David P. Nicolau

ABSTRACTCeftibuten-clavulanate (CTB-CLA) is a novel β-lactam–β-lactamase combination with potential utility for the management of urinary tract infections caused by extended-spectrum-β-lactamase (ESBL)-producing organisms. We examined the pharmacodynamics of the combination against 25Enterobacteriaceaeexpressing β-lactamases (CTX-M, TEM, and SHV wild types and SHV-ESBL) in the murine thigh infection model. MIC values of CTB and CTB-CLA ranged from 1 to >32 mg/liter and 0.125 to 8 mg/liter, respectively. Human-simulated regimens of CTB and CLA equivalent to clinical doses of 400 mg orally (p.o.) every 8 h (q8h) and 187 mg q8h, respectively, were developed. CLA dose fractionation studies were undertaken to characterize the driver of efficacy. CLA dose-ranging studies were undertaken to assess the activity of the CTB human-simulated regimen in combination with escalating CLA exposures. The relationships between the percentage of the dosing interval during which the free CLA plasma concentrations remained above a threshold concentration (%fT>CT) and the change in log10CFU per thigh at 24 h were examined across different threshold concentrations. Additionally, the efficacy of a human-simulated regimen of CTB-CLA was assessed against isolates with various susceptibilities to the combination. The pharmacokinetic/pharmacodynamic index that best correlated with the efficacy of the combination was %fT> threshold CLA plasma concentration of 0.5 mg/liter. The plasma %fT>0.5 mg/liter associated with the static endpoint was 20.59%. For isolates with CTB-CLA MICs of ≤4 mg/liter, stasis was achieved with a human-simulated regimen of CTB-CLA against 20/22 isolates (90.9%), while for isolates with MICs of 8 mg/liter, only 1/3 tested isolates (33.3%) displayed stasis. Results suggest a susceptibility breakpoint of 4 mg/liter for CTB-CLA. These data support the consideration of the CTB-CLA combination for the treatment of urinary tract infections due to ESBL-producingEnterobacteriaceae.


2020 ◽  
Vol 64 (6) ◽  
Author(s):  
Fabian Bernhard ◽  
Rajesh Odedra ◽  
Sylvie Sordello ◽  
Rossella Cardin ◽  
Samantha Franzoni ◽  
...  

ABSTRACT Third-generation cephalosporin (3GC)-resistant Enterobacteriaceae are classified as critical priority pathogens, with extended-spectrum β-lactamases (ESBLs) as principal resistance determinants. Enmetazobactam (formerly AAI101) is a novel ESBL inhibitor developed in combination with cefepime for empirical treatment of serious Gram-negative infections in settings where ESBLs are prevalent. Cefepime-enmetazobactam has been investigated in a phase 3 trial in patients with complicated urinary tract infections or acute pyelonephritis. This study examined pharmacokinetic-pharmacodynamic (PK-PD) relationships of enmetazobactam, in combination with cefepime, for ESBL-producing isolates of Klebsiella pneumoniae in 26-h murine neutropenic thigh infection models. Enmetazobactam dose fractionation identified the time above a free threshold concentration (fT > CT) as the PK-PD index predictive of efficacy. Nine ESBL-producing isolates of K. pneumoniae, resistant to cefepime and piperacillin-tazobactam, were included in enmetazobactam dose-ranging studies. The isolates encoded CTX-M-type, SHV-12, DHA-1, and OXA-48 β-lactamases and covered a cefepime-enmetazobactam MIC range from 0.06 to 2 μg/ml. Enmetazobactam restored the efficacy of cefepime against all isolates tested. Sigmoid curve fitting across the combined set of isolates identified enmetazobactam PK-PD targets for stasis and for a 1-log10 bioburden reduction of 8% and 44% fT > 2 μg/ml, respectively, with a concomitant cefepime PK-PD target of 40 to 60% fT > cefepime-enmetazobactam MIC. These findings support clinical dose selection and breakpoint setting for cefepime-enmetazobactam.


2014 ◽  
Vol 58 (10) ◽  
pp. 5943-5946 ◽  
Author(s):  
Qi Shan ◽  
Chaoping Liang ◽  
Jing Wang ◽  
Jufeng Li ◽  
Zhenling Zeng

ABSTRACTCefquinome is a cephalosporin with broad-spectrum antibacterial activity, including activity against enteric Gram-negative bacilli such asEscherichia coli. We utilized a neutropenic mouse model of colibacillosis to examine the pharmacodynamic (PD) characteristics of cefquinome, as measured by organism number in homogenized thigh cultures after 24 h of therapy. Serum drug levels following 4-fold-escalating single doses of cefquinome were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The pharmacokinetic (PK) properties of cefquinome were linear over a dose range of 10 to 640 mg/kg of body weight. Serum half-lives ranged from 0.29 to 0.32 h. Dose fractionation studies over a 24-h dose range of 2.5 to 320 mg/kg were conducted every 3, 6, 12, or 24 h. Nonlinear regression analysis was used to determine which pharmacodynamic parameter best correlated with efficacy. The free percentage of the dosing interval that the serum levels exceed the MIC (fT>MIC) was the PK-PD index that best correlated with efficacy (R2= 73% forE. coli, compared with 13% for the maximum concentration of the free drug in serum [fCmax]/MIC and 45% for the free-drug area under the concentration-time curve from 0 to 24 h [fAUC0-24]/MIC). Subsequently, we employed a similar dosing strategy by using 4-fold-increasing total cefquinome doses administered every 4 h to treat animals infected with four additionalE. coliisolates. A sigmoid maximum-effect (Emax) model was used to estimate the magnitudes of the %fT>MICassociated with net bacterial stasis, a 1-log10CFU reduction from baseline, and a 2-log10CFU reduction from baseline; the corresponding values were 28.01% ± 2.27%, 37.23% ± 4.05%, and 51.69% ± 9.72%. The potent bactericidal activity makes cefquinome an attractive option for the treatment of infections caused byE. coli.


2014 ◽  
Vol 59 (2) ◽  
pp. 1258-1264 ◽  
Author(s):  
Alexander J. Lepak ◽  
Karen Marchillo ◽  
William A. Craig ◽  
David R. Andes

ABSTRACTNAI-107 is a novel lantibiotic compound with potentin vitroactivity against Gram-positive bacteria, including methicillin-resistantStaphylococcus aureus(MRSA). The purpose of this study was to examine the activity of NAI-107 againstS. aureusstrains, including MRSA, in the neutropenic murine thigh infection model. Serum pharmacokinetics were determined and time-kill studies were performed following administration of single subcutaneous doses of 5, 20, and 80 mg/kg body weight. The dose fractionation included total doses ranging from 1.56 to 400 mg/kg/72 h, divided into 1, 2, 3, or 6 doses. Studies of treatment effects against 9S. aureusstrains (4 methicillin-susceptibleStaphylococcus aureus[MSSA] and 5 MRSA) using a 12-h dosing interval and total dose range of 1.56 to 400 mg/kg/72 h were also performed. A maximum effect (Emax) model was used to determine the pharmacokinetic/pharmacodynamic (PK/PD) index that best described the dose-response data and to estimate the doses required to achieve a net bacteriostatic dose (SD) and a 1-log reduction in CFU/thigh. The pharmacokinetic studies demonstrated an area under the concentration-time curve (AUC) range of 26.8 to 276 mg · h/liter and half-lives of 4.2 to 8.2 h. MICs ranged from 0.125 to 0.5 μg/ml. The 2 highest single doses produced more than a 2-log kill and prolonged postantibiotic effects (PAEs) ranging from 36 to >72 h. The dose fractionation-response curves were similar, and the AUC/MIC ratio was the most predictive PD index (AUC/MIC, coefficient of determination [R2] = 0.89; maximum concentration of drug in serum [Cmax]/MIC,R2= 0.79; time [T] > MIC,R2= 0.63). A ≥2-log kill was observed against all 9S. aureusstrains. The total drug 24-h AUC/MIC values associated with stasis and a 1-log kill for the 9S. aureusstrains were 371 ± 130 and 510 ± 227, respectively. NAI-107 demonstrated concentration-dependent killing and prolonged PAEs. The AUC/MIC ratio was the predictive PD index. Extensive killing was observed forS. aureusorganisms, independent of the MRSA status. The AUC/MIC target should be useful for the design of clinical dosing regimens.


2019 ◽  
Vol 63 (7) ◽  
Author(s):  
Mordechai Grupper ◽  
Sean M. Stainton ◽  
David P. Nicolau ◽  
Joseph L. Kuti

ABSTRACT A novel antibiotic combination of the oral cephalosporin ceftibuten (CTB) and the β-lactamase inhibitor clavulanate (CLA) is currently in development for urinary tract infections, including those caused by extended-spectrum-β-lactamase (ESBL)-producing organisms. This study aimed to identify the pharmacodynamic index and magnitude of this index for CLA, when combined with a fixed CTB exposure (∼59% free time above the CTB-CLA MIC) against ESBL-producing Escherichia coli and Klebsiella pneumoniae (CTB-CLA MICs of 0.25/0.125 to 1/0.5 μg/ml) using the in vitro chemostat model. Dose fractionation studies identified the time that free CLA concentrations remained above a threshold concentration (fT>threshold) to be the best pharmacodynamic index (R2 = 0.85) compared with the free area under the curve (AUC)/threshold ratio (R2 = 0.62) and free maximum concentration/threshold ratio (R2 = 0.37). For E. coli isolates, stasis and 1-log10 CFU reductions were achieved at 30.9 and 47.9% fT>CTB concentrations of the 2:1 CTB-CLA MIC (fT>MIC here), respectively. For K. pneumoniae isolates, stasis and 1-log10 CFU reductions were achieved at 51.9 and 92.0% fT>MIC, respectively. These data inform exposure requirements for CLA combined with CTB for optimizing pharmacodynamics against Enterobacteriaceae and should be useful in designing dosage regimens for this combination antibiotic.


Sign in / Sign up

Export Citation Format

Share Document