scholarly journals Effective Prevention of Microbial Biofilm Formation on Medical Devices by Low-Energy Surface Acoustic Waves

2006 ◽  
Vol 50 (12) ◽  
pp. 4144-4152 ◽  
Author(s):  
Zadik Hazan ◽  
Jona Zumeris ◽  
Harold Jacob ◽  
Hanan Raskin ◽  
Gera Kratysh ◽  
...  

ABSTRACT Low-energy surface acoustic waves generated from electrically activated piezo elements are shown to effectively prevent microbial biofilm formation on indwelling medical devices. The development of biofilms by four different bacteria and Candida species is prevented when such elastic waves with amplitudes in the nanometer range are applied. Acoustic-wave-activated Foley catheters have all their surfaces vibrating with longitudinal and transversal dispersion vectors homogeneously surrounding the catheter surfaces. The acoustic waves at the surface are repulsive to bacteria and interfere with the docking and attachment of planktonic microorganisms to solid surfaces that constitute the initial phases of microbial biofilm development. FimH-mediated adhesion of uropathogenic Escherichia coli to guinea pig erythrocytes was prevented at power densities below thresholds that activate bacterial force sensor mechanisms. Elevated power densities dramatically enhanced red blood cell aggregation. We inserted Foley urinary catheters attached with elastic-wave-generating actuators into the urinary tracts of male rabbits. The treatment with the elastic acoustic waves maintained urine sterility for up to 9 days compared to 2 days in control catheterized animals. Scanning electron microscopy and bioburden analyses revealed diminished biofilm development on these catheters. The ability to prevent biofilm formation on indwelling devices and catheters can benefit the implanted medical device industry.

Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1025
Author(s):  
Dan Cristian Gheorghe ◽  
Andrei Ilie ◽  
Adelina-Gabriela Niculescu ◽  
Alexandru Mihai Grumezescu

Otorhinolaryngology is a vast domain that requires the aid of many resources for optimal performance. The medical devices utilized in this branch share common problems, such as the formation of biofilms. These structured communities of microbes encased in a 3D matrix can develop antimicrobial resistance (AMR), thus making it a problem with challenging solutions. Therefore, it is of concern the introduction in the medical practice involving biomaterials for ear, nose and throat (ENT) devices, such as implants for the trachea (stents), ear (cochlear implants), and voice recovery (voice prosthetics). The surface of these materials must be biocompatible and limit the development of biofilm while still promoting regeneration. In this respect, several surface modification techniques and functionalization procedures can be utilized to facilitate the success of the implants and ensure a long time of use. On this note, this review provides information on the intricate underlying mechanisms of biofilm formation, the large specter of implants and prosthetics that are susceptible to microbial colonization and subsequently related infections. Specifically, the discussion is particularized on biofilm development on ENT devices, ways to reduce it, and recent approaches that have emerged in this field.


2017 ◽  
Vol 25 (1) ◽  
pp. 9-26
Author(s):  
Monica Licker ◽  
Roxana Moldovan ◽  
Elena Hogea ◽  
Delia Muntean ◽  
Florin Horhat ◽  
...  

Abstract The term biofilm designates an aggregate of microorganisms belonging to one or more species which adhere to various surfaces but also to each another. These microbial communities are included and interconnected within an organic structure known as slime, composed of protein substances, polysaccharides, and DNA. The Center for Disease prevention and control considers infections with bacteria in biofilms among the 7 most important challenges which must be overcome in order to improve the safety of health services. The risk of microbial biofilm development exists for a long list of medical devices and equipment, as well as in certain diseases such as cystic fibrosis. An aggravating aspect is represented by the almost 1,000 times higher antimicrobial resistance of bacteria growing and multiplying within biofilms. Thus, in case of biofilm-infected medical devices, the resistance to antimicrobial treatments requires the removal of the device which essentially means the failure of the exploratory or therapeutic intervention in question. The role of microbial biofilms in medical pathology is a subject that raises interest for both researchers and clinicians in order to establish new methods for prevention and treatment of biofilms. This paper is intended as an overview in the management of microbial biofilms, presenting future insights, with technological progress in microscopy, molecular genetics, and genome analysis. Therefore the present paper will focus on describing the mechanisms involved in biofilm development, biofilm related infections, methods of detection and quantification of microbial communities and therapeutical approaches.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Sangita Revdiwala ◽  
Bhaumesh M. Rajdev ◽  
Summaiya Mulla

Background. Biofilms contaminate catheters, ventilators, and medical implants; they act as a source of disease for humans, animals, and plants.Aim. Critical care units of any healthcare institute follow various interventional strategies with use of medical devices for the management of critical cases. Bacteria contaminate medical devices and form biofilms.Material and Methods. The study was carried out on 100 positive bacteriological cultures of medical devices which were inserted in hospitalized patients. The bacterial isolates were processed as per microtitre plate. All the isolates were subjected to antibiotic susceptibility testing by VITEK 2 compact automated systems.Results. Out of the total 100 bacterial isolates tested, 88 of them were biofilm formers. A 16–20-hour incubation period was found to be optimum for biofilm development. 85% isolates were multidrug resistants and different mechanisms of bacterial drug resistance like ESBL, carbapenemase, and MRSA were found among isolates.Conclusion. Availability of nutrition in the form of glucose enhances the biofilm formation by bacteria. Time and availability of glucose are important factors for assessment of biofilm progress. It is an alarm for those who are associated with invasive procedures and indwelling medical devices especially in patients with low immunity.


2020 ◽  
Vol 106 (1) ◽  
pp. 155-162
Author(s):  
M. Slettengren ◽  
S. Mohanty ◽  
W. Kamolvit ◽  
J. van der Linden ◽  
A. Brauner

2012 ◽  
Vol 56 (11) ◽  
pp. 5923-5937 ◽  
Author(s):  
Yibao Ma ◽  
Meng Chen ◽  
John E. Jones ◽  
Andrew C. Ritts ◽  
Qingsong Yu ◽  
...  

ABSTRACTBiofilm formation on implantable medical devices is a major impediment to the treatment of nosocomial infections and promotes local progressive tissue destruction.Staphylococcus epidermidisinfections are the leading cause of biofilm formation on indwelling devices. Bacteria in biofilms are highly resistant to antibiotic treatment, which in combination with the increasing prevalence of antibiotic resistance among human pathogens further complicates treatment of biofilm-related device infections. We have developed a novel plasma coating technology. Trimethylsilane (TMS) was used as a monomer to coat the surfaces of 316L stainless steel and grade 5 titanium alloy, which are widely used in implantable medical devices. The results of biofilm assays demonstrated that this TMS coating markedly decreasedS. epidermidisbiofilm formation by inhibiting the attachment of bacterial cells to the TMS-coated surfaces during the early phase of biofilm development. We also discovered that bacterial cells on the TMS-coated surfaces were more susceptible to antibiotic treatment than their counterparts in biofilms on uncoated surfaces. These findings suggested that TMS coating could result in a surface that is resistant to biofilm development and also in a bacterial community that is more sensitive to antibiotic therapy than typical biofilms.


Author(s):  
Kemining W. Yeh ◽  
Richard S. Muller ◽  
Wei-Kuo Wu ◽  
Jack Washburn

Considerable and continuing interest has been shown in the thin film transducer fabrication for surface acoustic waves (SAW) in the past few years. Due to the high degree of miniaturization, compatibility with silicon integrated circuit technology, simplicity and ease of design, this new technology has played an important role in the design of new devices for communications and signal processing. Among the commonly used piezoelectric thin films, ZnO generally yields superior electromechanical properties and is expected to play a leading role in the development of SAW devices.


Author(s):  
B.D. Tall ◽  
K.S. George ◽  
R. T. Gray ◽  
H.N. Williams

Studies of bacterial behavior in many environments have shown that most organisms attach to surfaces, forming communities of microcolonies called biofilms. In contaminated medical devices, biofilms may serve both as reservoirs and as inocula for the initiation of infections. Recently, there has been much concern about the potential of dental units to transmit infections. Because the mechanisms of biofilm formation are ill-defined, we investigated the behavior and formation of a biofilm associated with tubing leading to the water syringe of a dental unit over a period of 1 month.


1998 ◽  
Vol 77 (5) ◽  
pp. 1195-1202
Author(s):  
Andreas Knabchen Yehoshua, B. Levinson, Ora

Sign in / Sign up

Export Citation Format

Share Document