scholarly journals Miltefosine Efficiently Eliminates Leishmania major Amastigotes from Infected Murine Dendritic Cells without Altering Their Immune Functions

2009 ◽  
Vol 54 (2) ◽  
pp. 652-659 ◽  
Author(s):  
Klaus Griewank ◽  
Caroline Gazeau ◽  
Andreas Eichhorn ◽  
Esther von Stebut

ABSTRACT As a treatment for leishmaniasis, miltefosine exerts direct toxic effects on the parasites. Miltefosine also modulates immune cells such as macrophages, leading to parasite elimination via oxidative radicals. Dendritic cells (DC) are critical for initiation of protective immunity against Leishmania through induction of Th1 immunity via interleukin 12 (IL-12). Here, we investigated the effects of miltefosine on DC in Leishmania major infections. When cocultured with miltefosine for 4 days, the majority of in vitro-infected DC were free of parasites. Miltefosine treatment did not influence DC maturation (upregulation of major histocompatibility complex II [MHC II] or costimulatory molecules, e.g., CD40, CD54, and CD86) or significantly alter cytokine release (IL-12, tumor necrosis factor alpha [TNF-α], or IL-10). Further, miltefosine DC treatment did not alter antigen presentation, since unrestricted antigen-specific proliferation of CD4+ and CD8+ T cells was observed upon stimulation with miltefosine-treated, infected DC. In addition, miltefosine application in vivo did not lead to maturation/emigration of skin DC. DC NO− production, a mechanism used by phagocytes to rid themselves of intracellular parasites, was also unaltered upon miltefosine treatment. Our data confirm prior studies indicating that in contrast to, e.g., pentavalent antimonials, miltefosine functions independently of the immune system, mostly through direct toxicity against the Leishmania parasite.

2009 ◽  
Vol 53 (12) ◽  
pp. 5114-5121 ◽  
Author(s):  
Susana Mendez ◽  
Ryan Traslavina ◽  
Meleana Hinchman ◽  
Lu Huang ◽  
Patricia Green ◽  
...  

ABSTRACT Antileishmanial therapy is suboptimal due to toxicity, high cost, and development of resistance to available drugs. Pyrazinamide (PZA) is a constituent of short-course tuberculosis chemotherapy. We investigated the effect of PZA on Leishmania major promastigote and amastigote survival. Promastigotes were more sensitive to the drug than amastigotes, with concentrations at which 50% of parasites were inhibited (MIC50) of 16.1 and 8.2 μM, respectively (48 h posttreatment). Moreover, 90% of amastigotes were eliminated at 120 h posttreatment, indicating that longer treatments will result in parasite elimination. Most strikingly, PZA treatment of infected C57BL/6 mice resulted in protection against disease and in a 100-fold reduction in the parasite burden. PZA treatment of J774 cells and bone marrow-derived dendritic cells and macrophages increased interleukin 12, tumor necrosis factor alpha, and activation marker expression, as well as nitric oxide production, suggesting that PZA enhances effective immune responses against the parasite. PZA treatment also activates dendritic cells deficient in Toll-like receptor 2 and 4 expression to initiate a proinflammatory response, confirming that the immunostimulatory effect of PZA is directly caused by the drug and is independent of Toll-like receptor stimulation. These results not only are strongly indicative of the promise of PZA as an alternative antileishmanial chemotherapy but also suggest that PZA causes collateral immunostimulation, a phenomenon that has never been reported for this drug.


2002 ◽  
Vol 70 (10) ◽  
pp. 5533-5539 ◽  
Author(s):  
Kenneth C. Bagley ◽  
Sayed F. Abdelwahab ◽  
Robert G. Tuskan ◽  
Timothy R. Fouts ◽  
George K. Lewis

ABSTRACT Cholera toxin (CT) and heat-labile enterotoxin (LT) are powerful mucosal adjuvants whose cellular targets and mechanism of action are unknown. There is emerging evidence that dendritic cells (DC) are one of the principal cell types that mediate the adjuvant effects of these toxins in vivo. Here we investigate the effects of CT and LT on the maturation of human monocyte-derived DC (MDDC) in vitro. We found that an enzymatically active A domain is necessary for both CT and LT to induce the maturation of MDDC and that this activation is strictly cyclic AMP (cAMP) dependent. ADP-ribosylation-defective derivatives of these toxins failed to induce maturation of MDDC, whereas dibutyryl-cyclic-3′,5′-AMP and Forskolin mimic the maturation of MDDC induced by CT and LT. In addition, an inhibitor of cAMP-dependent kinases, Rp-8-Br-cAMPs, blocked the ability of CT, LT, and Forskolin to activate MDDC. CT, LT, dibutyryl-cyclic-3′,5′-AMP, and Forskolin also dominantly inhibit interleukin 12 and tumor necrosis factor alpha production by MDDC in the presence of saturating concentrations of lipopolysaccharide. Taken together, these results show that the effects of CT and LT on MDDC are mediated by cAMP.


2014 ◽  
Vol 82 (8) ◽  
pp. 3164-3176 ◽  
Author(s):  
Cecilia Casaravilla ◽  
Álvaro Pittini ◽  
Dominik Rückerl ◽  
Paula I. Seoane ◽  
Stephen J. Jenkins ◽  
...  

ABSTRACTThe larval stage of the cestode parasiteEchinococcus granulosuscauses hydatid disease in humans and livestock. This infection is characterized by the growth in internal organ parenchymae of fluid-filled structures (hydatids) that elicit surprisingly little inflammation in spite of their massive size and persistence. Hydatids are protected by a millimeter-thick layer of mucin-based extracellular matrix, termed the laminated layer (LL), which is thought to be a major factor determining the host response to the infection. Host cells can interact both with the LL surface and with materials that are shed from it to allow parasite growth. In this work, we analyzed the response of dendritic cells (DCs) to microscopic pieces of the native mucin-based gel of the LL (pLL).In vitro, this material induced an unusual activation state characterized by upregulation of CD86 without concomitant upregulation of CD40 or secretion of cytokines (interleukin 12 [IL-12], IL-10, tumor necrosis factor alpha [TNF-α], and IL-6). When added to Toll-like receptor (TLR) agonists, pLL-potentiated CD86 upregulation and IL-10 secretion while inhibiting CD40 upregulation and IL-12 secretion.In vivo, pLL also caused upregulation of CD86 and inhibited CD40 upregulation in DCs. Contrary to expectations, oxidation of the mucin glycans in pLL with periodate did not abrogate the effects on cells. Reduction of disulfide bonds, which are known to be important for LL structure, strongly diminished the impact of pLL on DCs without altering the particulate nature of the material. In summary, DCs respond to the LL mucin meshwork with a “semimature” activation phenotype, bothin vitroandin vivo.


2009 ◽  
Vol 78 (1) ◽  
pp. 154-167 ◽  
Author(s):  
Jennifer C. Chase ◽  
Catharine M. Bosio

ABSTRACT Francisella tularensis is a Gram-negative bacterium that causes acute, lethal disease following inhalation. We have previously shown that viable F. tularensis fails to stimulate secretion of proinflammatory cytokines following infection of human dendritic cells (hDC) in vitro and pulmonary cells in vivo. Here we demonstrate that the presence of the CD14 receptor is critical for detection of virulent F. tularensis strain SchuS4 by dendritic cells, monocytes, and pulmonary cells. Addition of soluble CD14 (sCD14) to hDC restored cytokine production following infection with strain SchuS4. In contrast, addition of anti-CD14 to monocyte cultures inhibited the ability of these cells to respond to strain SchuS4. Addition of CD14 or blocking CD14 following SchuS4 infection in dendritic cells and monocytes, respectively, was not due to alterations in phagocytosis or replication of the bacterium in these cells. Administration of sCD14 in vivo also restored cytokine production following infection with strain SchuS4, as assessed by increased concentrations of tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), IL-12p70, and IL-6 in the lungs of mice receiving sCD14 compared to mock-treated controls. In contrast to homogenous cultures of monocytes or dendritic cells infected in vitro, mice treated with sCD14 in vivo also exhibited controlled bacterial replication and dissemination compared to mock-treated controls. Interestingly, animals that lacked CD14 were not more susceptible or resistant to pulmonary infection with SchuS4. Together, these data support the hypothesis that the absence or low abundance of CD14 on hDC and in the lung contributes to evasion of innate immunity by virulent F. tularensis. However, CD14 is not required for development of inflammation during the last 24 to 48 h of SchuS4 infection. Thus, the presence of this receptor may aid in control of virulent F. tularensis infections at early, but not late, stages of infection.


2006 ◽  
Vol 34 (04) ◽  
pp. 667-684 ◽  
Author(s):  
Chia-Yang Li ◽  
Jau-Ling Suen ◽  
Bor-Luen Chiang ◽  
Pei-Dawn Lee Chao ◽  
Shih-Hua Fang

Our previous studies had reported that morin decreased the interleukin-12 (IL-12) and tumor necrosis factor-alpha (TNF-α) production in lipopolysaccharide (LPS)-activated macrophages, suggesting that morin may promote helper T type 2 (Th2) response in vivo. Dendritic cells (DCs) are the most potent antigen presenting cells and known to play a major role in the differentiation of helper T type 1 (Th1) and Th2 responses. This study aimed to reveal whether morin is able to control the Th differentiation through modulating the maturation and functions of DCs. Bone marrow-derived dendritic cells (BM-DCs) were incubated with various concentrations of morin and their characteristics were studied. The results indicated that morin significantly affects the phenotype and cytokine expression of BM-DCs. Morin reduced the production of IL-12 and TNF-α in BM-DCs, in response to LPS stimulation. In addition, the proliferative response of stimulated alloreactive T cells was significantly decreased by morin in BM-DCs. Furthermore, allogeneic T cells secreted higher IL-4 and lower IFN-γ in response to morin in BM-DCs. In conclusion, these results suggested that morin favors Th2 cell differentiation through modulating the maturation and function of BM-DCs.


Blood ◽  
1998 ◽  
Vol 91 (2) ◽  
pp. 475-483 ◽  
Author(s):  
Keith E. Norman ◽  
Gary P. Anderson ◽  
Hartmut C. Kolb ◽  
Klaus Ley ◽  
Beat Ernst

Abstract Leukocyte rolling is the earliest observable event in their recruitment from the circulation to inflamed tissue. This rolling is mediated largely by interaction between the selectin family of adhesion molecules and their glycosylated ligands. Although the nature of these ligands and their interaction with the selectins is not fully understood, it is accepted that expression of fucosylated sialylated glycans such as sialyl Lewisx (sLex) is required for function. Despite findings that sLex inhibits binding of leukocytes to E-selectin in vitro, and has beneficial effects in inflammatory disease models, inhibition of E-selectin–dependent leukocyte rolling in vivo has not been described. Functional overlap between the selectins has been noted and reduction of rolling by E-selectin antibodies only occurs if P-selectin is absent or blocked. We demonstrate that leukocyte rolling velocity in tumor necrosis factor alpha (TNFα)-stimulated mouse cremaster is increased following treatment with either sLex or the sLex-mimetic CGP69669A and that rolling is dramatically reduced if CGP69669A is applied in the presence of anti–P-selectin antibody. These effects are characteristic of E-selectin antagonism. In contrast, surgically stimulated (L- or P-selectin–dependent) rolling is unaffected by either sLex or CGP69669A. Our data demonstrate that CGP69669A is an effective and selective antagonist of E-selectin in vivo.


Blood ◽  
2000 ◽  
Vol 96 (10) ◽  
pp. 3585-3591 ◽  
Author(s):  
Keith E. Norman ◽  
Andreas G. Katopodis ◽  
Gebhard Thoma ◽  
Frank Kolbinger ◽  
Anne E. Hicks ◽  
...  

Abstract Selectin-dependent rolling is the earliest observable event in the recruitment of leukocytes to inflamed tissues. Several glycoproteins decorated with sialic acid, fucose, and/or sulfate have been shown to bind the selectins. The best-characterized selectin ligand is P-selectin glycoprotein-1 (PSGL-1) that supports P-selectin– dependent rolling in vitro and in vivo. In vitro studies have suggested that PSGL-1 may also be a ligand for E- and L-selectins. To study the in vivo function of PSGL-1, without the influence of other leukocyte proteins, the authors observed the interaction of PSGL-1–coated microspheres in mouse venules stimulated to express P- and/or E-selectin. Microspheres coated with functional recombinant PSGL-1 rolled in surgically stimulated and tumor necrosis factor alpha (TNFα)-stimulated mouse venules. P-selectin deficiency or inhibition abolished microsphere rolling in surgically and TNFα-stimulated venules, whereas E-selectin deficiency or inhibition increased microsphere rolling velocity in TNFα-stimulated venules. The results suggest that P-selectin–PSGL-1 interaction alone is sufficient to mediate rolling in vivo and that E-selectin–PSGL-1 interaction supports slow rolling.


Blood ◽  
2005 ◽  
Vol 106 (7) ◽  
pp. 2252-2258 ◽  
Author(s):  
Thierry Walzer ◽  
Marc Dalod ◽  
Scott H. Robbins ◽  
Laurence Zitvogel ◽  
Eric Vivier

AbstractSeveral recent publications have focused on the newly described interactions between natural-killer (NK) cells and dendritic cells (DCs). Activated NK cells induce DC maturation either directly or in synergy with suboptimal levels of microbial signals. Immature DCs appear susceptible to autologous NK-cell-mediated cytolysis while mature DCs are protected. NK-cell-induced DC activation is dependent on both tumor necrosis factor-α (TNF-α)/interferon-γ (IFN-γ) secretion and a cell-cell contact involving NKp30. In vitro, interleukin-12 (IL-12)/IL-18, IL-15, and IFN-α/β production by activated DCs enhance, in turn, NK-cell IFN-γ production, proliferation, and cytotoxic potential, respectively. In vivo, NK-cell/DC interactions may occur in lymphoid organs as well as in nonlymphoid tissues, and their consequences are multiple. By inducing DC activation, NK-cell activation induced by tumor cells can indirectly promote antitumoral T-cell responses. Reciprocally, DCs activated through Toll-like receptors (TLRs) induce potent NK-cell activation in antiviral responses. Thus, DCs and NK cells are equipped with complementary sets of receptors that allow the recognition of various pathogenic agents, emphasizing the role of NK-cell/DC crosstalk in the coordination of innate and adaptive immune responses.


Sign in / Sign up

Export Citation Format

Share Document