scholarly journals Generic Vancomycin Products Fail In Vivo despite Being Pharmaceutical Equivalents of the Innovator

2010 ◽  
Vol 54 (8) ◽  
pp. 3271-3279 ◽  
Author(s):  
Omar Vesga ◽  
Maria Agudelo ◽  
Beatriz E. Salazar ◽  
Carlos A. Rodriguez ◽  
Andres F. Zuluaga

ABSTRACT Generic versions of intravenous antibiotics are not required to demonstrate therapeutic equivalence with the innovator because therapeutic equivalence is assumed from pharmaceutical equivalence. To test such assumptions, we studied three generic versions of vancomycin in simultaneous experiments with the innovator and determined the concentration and potency of the active pharmaceutical ingredient by microbiological assay, single-dose pharmacokinetics in infected mice, antibacterial effect by broth microdilution and time-kill curves (TKC), and pharmacodynamics against two wild-type strains of Staphylococcus aureus by using the neutropenic mouse thigh infection model. The main outcome measure was the comparison of magnitudes and patterns of in vivo efficacy between generic products and the innovator. Except for one product exhibiting slightly greater concentration, vancomycin generics were undistinguishable from the innovator based on concentration and potency, protein binding, in vitro antibacterial effect determined by minimal inhibitory or bactericidal concentrations and TKC, and serum pharmacokinetics. Despite such similarities, all generic products failed in vivo to kill S. aureus, while the innovator displayed the expected bactericidal efficacy: maximum antibacterial effect (E max) (95% confidence interval [CI]) was 2.04 (1.89 to 2.19), 2.59 (2.21 to 2.98), and 3.48 (2.92 to 4.04) versus 5.65 (5.52 to 5.78) log10 CFU/g for three generics and the innovator product, respectively (P < 0.0001, any comparison). Nonlinear regression analysis suggests that generic versions of vancomycin contain inhibitory and stimulatory principles within their formulations that cause agonistic-antagonistic actions responsible for in vivo failure. In conclusion, pharmaceutical equivalence does not imply therapeutic equivalence for vancomycin.

2013 ◽  
Vol 58 (2) ◽  
pp. 1005-1018 ◽  
Author(s):  
M. Agudelo ◽  
C. A. Rodriguez ◽  
C. A. Pelaez ◽  
O. Vesga

ABSTRACTSeveral studies with animal models have demonstrated that bioequivalence of generic products of antibiotics like vancomycin, as currently defined, do not guarantee therapeutic equivalence. However, the amounts and characteristics of impurities and degradation products in these formulations do not violate the requirements of the U.S. Pharmacopeia (USP). Here, we provide experimental data with three generic products of meropenem that help in understanding how these apparently insignificant chemical differences affect thein vivoefficacy. Meropenem generics were compared with the innovatorin vitroby microbiological assay, susceptibility testing, and liquid chromatography/mass spectrometry (LC/MS) analysis andin vivowith the neutropenic guinea pig soleus infection model (Pseudomonas aeruginosa) and the neutropenic mouse thigh (P. aeruginosa), brain (P. aeruginosa), and lung (Klebisella pneumoniae) infection models, adding the dihydropeptidase I (DHP-I) inhibitor cilastatin in different proportions to the carbapenem. We found that the concentration and potency of the active pharmaceutical ingredient,in vitrosusceptibility testing, and mouse pharmacokinetics were identical for all products; however, two generics differed significantly from the innovator in the guinea pig and mouse models, while the third generic was therapeutically equivalent under all conditions. Trisodium adducts in a bioequivalent generic made it more susceptible to DHP-I hydrolysis and less stable at room temperature, explaining its therapeutic nonequivalence. We conclude that the therapeutic nonequivalence of generic products of meropenem is due to greater susceptibility to DHP-I hydrolysis. These failing generics are compliant with USP requirements and would remain undetectable under current regulations.


2019 ◽  
Vol 74 (11) ◽  
pp. 3211-3216 ◽  
Author(s):  
Stephan Göttig ◽  
Denia Frank ◽  
Eleonora Mungo ◽  
Anika Nolte ◽  
Michael Hogardt ◽  
...  

Abstract Objectives The β-lactam/β-lactamase inhibitor combination ceftazidime/avibactam is active against KPC-producing Enterobacterales. Herein, we present molecular and phenotypic characterization of ceftazidime/avibactam resistance in KPC-3-producing Klebsiella pneumoniae that emerged in vivo and in vitro. Methods Sequence analysis of blaKPC-3 was performed from clinical and in vitro-generated ceftazidime/avibactam-resistant K. pneumoniae isolates. Time–kill kinetics and the Galleria mellonella infection model were applied to evaluate the activity of ceftazidime/avibactam and imipenem alone and in combination. Results The ceftazidime/avibactam-resistant clinical K. pneumoniae isolate revealed the amino acid change D179Y in KPC-3. Sixteen novel mutational changes in KPC-3 among in vitro-selected ceftazidime/avibactam-resistant isolates were described. Time–kill kinetics showed the emergence of a resistant subpopulation under selection pressure with either imipenem or ceftazidime/avibactam. However, combined selection pressure with imipenem plus ceftazidime/avibactam prevented the development of resistance and resulted in bactericidal activity. Concordantly, the G. mellonella infection model revealed that monotherapy with ceftazidime/avibactam is prone to select for resistance in vivo and that combination therapy with imipenem results in significantly better survival. Conclusions Ceftazidime/avibactam is a valuable antibiotic against MDR and carbapenem-resistant Enterobacterales. Based on time–kill kinetics as well as an in vivo infection model we postulate a combination therapy of ceftazidime/avibactam and imipenem as a strategy to prevent the development of ceftazidime/avibactam resistance in KPC-producing Enterobacterales in vivo.


2020 ◽  
Vol 64 (8) ◽  
Author(s):  
Su Mon Aye ◽  
Irene Galani ◽  
Heidi Yu ◽  
Jiping Wang ◽  
Ke Chen ◽  
...  

ABSTRACT Resistance to polymyxin antibiotics is increasing. Without new antibiotic classes, combination therapy is often required. We systematically investigated bacterial killing with polymyxin-based combinations against multidrug-resistant (including polymyxin-resistant), carbapenemase-producing Klebsiella pneumoniae. Monotherapies and double- and triple-combination therapies were compared to identify the most efficacious treatment using static time-kill studies (24 h, six isolates), an in vitro pharmacokinetic/pharmacodynamic model (IVM; 48 h, two isolates), and the mouse thigh infection model (24 h, six isolates). In static time-kill studies, all monotherapies (polymyxin B, rifampin, amikacin, meropenem, or minocycline) were ineffective. Initial bacterial killing was enhanced with various polymyxin B-containing double combinations; however, substantial regrowth occurred in most cases by 24 h. Most polymyxin B-containing triple combinations provided greater and more sustained killing than double combinations. Standard dosage regimens of polymyxin B (2.5 mg/kg of body weight/day), rifampin (600 mg every 12 h), and amikacin (7.5 mg/kg every 12 h) were simulated in the IVM. Against isolate ATH 16, no viable bacteria were detected across 5 to 25 h with triple therapy, with regrowth to ∼2-log10 CFU/ml occurring at 48 h. Against isolate BD 32, rapid initial killing of ∼3.5-log10 CFU/ml at 5 h was followed by a slow decline to ∼2-log10 CFU/ml at 48 h. In infected mice, polymyxin B monotherapy (60 mg/kg/day) generally was ineffective. With triple therapy (polymyxin B at 60 mg/kg/day, rifampin at 120 mg/kg/day, and amikacin at 300 mg/kg/day), at 24 h there was an ∼1.7-log10 CFU/thigh reduction compared to the starting inoculum for all six isolates. Our results demonstrate that the polymyxin B-rifampin-amikacin combination significantly enhanced in vitro and in vivo bacterial killing, providing important information for the optimization of polymyxin-based combinations in patients.


2016 ◽  
Vol 60 (5) ◽  
pp. 3001-3006 ◽  
Author(s):  
Akihiro Morinaka ◽  
Yuko Tsutsumi ◽  
Keiko Yamada ◽  
Yoshihiro Takayama ◽  
Shiro Sakakibara ◽  
...  

ABSTRACTGram-negative bacteria are evolving to produce β-lactamases of increasing diversity that challenge antimicrobial chemotherapy. OP0595 is a new diazabicyclooctane serine β-lactamase inhibitor which acts also as an antibiotic and as a β-lactamase-independent β-lactam “enhancer” againstEnterobacteriaceae. Here we determined the optimal concentration of OP0595 in combination with piperacillin, cefepime, and meropenem, in addition to the antibacterial activity of OP0595 alone and in combination with cefepime, inin vitrotime-kill studies and anin vivoinfection model against five strains of CTX-M-15-positiveEscherichia coliand five strains of KPC-positiveKlebsiella pneumoniae. An OP0595 concentration of 4 μg/ml was found to be sufficient for an effective combination with all three β-lactam agents. In bothin vitrotime-kill studies and anin vivomodel of infection, cefepime-OP0595 showed stronger efficacy than cefepime alone against all β-lactamase-positive strains tested, whereas OP0595 alone showed weaker or no efficacy. Taken together, these data indicate that combinational use of OP0595 and a β-lactam agent is important to exert the antimicrobial functions of OP0595.


2021 ◽  
Vol 14 (8) ◽  
pp. 823
Author(s):  
Tsung-Ying Yang ◽  
Sung-Pin Tseng ◽  
Heather Nokulunga Dlamini ◽  
Po-Liang Lu ◽  
Lin Lin ◽  
...  

The increasing trend of carbapenem-resistant Acinetobacter baumannii (CRAB) worldwide has become a concern, limiting therapeutic alternatives and increasing morbidity and mortality rates. The immunomodulation agent ammonium trichloro (dioxoethylene-O,O′-) tellurate (AS101) was repurposed as an antimicrobial agent against CRAB. Between 2016 and 2018, 27 CRAB clinical isolates were collected in Taiwan. The in vitro antibacterial activities of AS101 were evaluated using broth microdilution, time-kill assay, reactive oxygen species (ROS) detection and electron microscopy. In vivo effectiveness was assessed using a sepsis mouse infection model. The MIC range of AS101 for 27 CRAB isolates was from 0.5 to 32 µg/mL, which is below its 50% cytotoxicity (approximately 150 µg/mL). Bactericidal activity was confirmed using a time-kill assay. The antibacterial mechanism of AS101 was the accumulation of the ROS and the disruption of the cell membrane, which, in turn, results in cell death. The carbapenemase-producing A. baumannii mouse sepsis model showed that AS101 was a better therapeutic effect than colistin. The mice survival rate after 120 h was 33% (4/12) in the colistin-treated group and 58% (7/12) in the high-dose AS101 (3.33 mg/kg/day) group. Furthermore, high-dose AS101 significantly decreased bacterial population in the liver, kidney and spleen (all p < 0.001). These findings support the concept that AS101 is an ideal candidate for further testing in future studies.


2019 ◽  
Vol 63 (4) ◽  
Author(s):  
S. S. Bhagwat ◽  
H. Periasamy ◽  
S. S. Takalkar ◽  
S. R. Palwe ◽  
H. N. Khande ◽  
...  

ABSTRACTWCK 5222 is a combination of cefepime and the high-affinity PBP2-binding β-lactam enhancer zidebactam. The cefepime-zidebactam combination is active against multidrug-resistant Gram-negative bacteria, including carbapenemase-expressingAcinetobacter baumannii. The mechanism of action of the combination involves concurrent multiple penicillin binding protein inhibition, leading to the enhanced bactericidal action of cefepime. The aim of the present study was to assess the impact of the zidebactam-mediated enhancedin vitrobactericidal action in modulating the percentage of the time that the free drug concentration remains above the MIC (percentfT>MIC) for cefepime required for thein vivokilling ofA. baumannii. Cefepime and cefepime-zidebactam MICs were comparable and ranged from 2 to 16 mg/liter for theA. baumanniistrains (n = 5) employed in the study. Time-kill studies revealed the improved killing of these strains by the cefepime-zidebactam combination compared to that by the constituents alone. Employing a neutropenic mouse lung infection model, exposure-response analyses for all theA. baumanniistrains showed that the cefepimefT>MIC required for 1-log10kill was 38.9%. In the presence of a noneffective dose of zidebactam, the cefepimefT>MIC requirement dropped significantly to 15.5%, but it still rendered a 1-log10kill effect. Thus, zidebactam mediated the improvement in cefepime’s bactericidal effect observed in time-kill studies, manifestedin vivothrough the lowering of cefepime’s pharmacodynamic requirement. This is a first-ever study demonstrating a β-lactam enhancer role of zidebactam that helps augment thein vivoactivity of cefepime by reducing the magnitude of its pharmacodynamically relevant exposures againstA. baumannii.


2017 ◽  
Vol 42 (4) ◽  
pp. 1657-1669 ◽  
Author(s):  
YongTao Li ◽  
JianRong Huang ◽  
LanJuan Li ◽  
LinSheng Liu

Background/Aims: Pseudomonas aeruginosa (PA) is one of the major opportunistic pathogens which can cause chronic lung infection of cystic fibrosis (CF). The formation of PA biofilm promotes CF development and restricts the antimicrobial efficacies of current antibiotics. Methods: The antimicrobial effects of azithromycin (AZM) and berberine (BER) alone and in combination were evaluated using microdilution method, checkerboard assay, time-kill test, qRT-PCR analysis and absorption method. The treatments of AZM and/or BER were further evaluated in an animal lung infection model via observing survival rate, bacterial burden and histopathology of lung, the levels of pro-/anti-inflammatory cytokines. Results: AZM-BER were demonstrated to be synergistic against ten clinical PA isolates as well as the standard reference PA ATCC27853, in which PA03 was the most susceptible isolate to AZM-BER with FICI of 0.13 and chosen for subsequent experiments. The synergism of AZM-BER was further confirmed against PA03 in time-kill test and scanning electron microscope (SEM) at their concentrations showing synergism. In PA03, we found that AZM-BER could significantly attenuate productions of a series of virulence factors including alginate, LasA protease, LasB protease, pyoverdin, pyocyanin, chitinase as well as extracellular DNA, and remarkably inhibit the levels of quorum sensing (QS) molecules and the expressions of lasI, lasR, rhlI, rhlR at 1/2×MIC, 1×MIC and 2×MIC. In the infection model, the mice survival were increased markedly, the inflammations of infected lungs were improved greatly along with reduced IL-6, IL-8 and ascended IL-10 at 0.8 mg/kg of AZM combined with 3.2 mg/kg of BER. Conclusion: BER might be a promising synergist to enhance the antimicrobial activity of AZM in vitro and in vivo.


2019 ◽  
Author(s):  
Caifen Qi ◽  
Shuangli Xu ◽  
Maomao Wu ◽  
Shuo Zhu ◽  
Yanyan Liu ◽  
...  

AbstractObjectiveTo explore the in vitro and in vivo antibacterial activity of linezolid/fosfomycin combination against vancomycin-susceptible and -resistant enterococci (VSE and VRE), providing theoretical basis for the treatment of VRE.MethodsThe checkerboard method and time-kill curve study were used to evaluate the synergistic effect of linezolid combined with fosfomycin against VSE and VRE. The transmission electron microscopy (TEM) was employed to observe the bacterial cell morphology followed by each drug alone and in combination, elucidating the possible result of antibiotic combination therapy. The Galleria mellonella infection model was constructed to demonstrate the in vivo efficacy of linezolid plus fosfomycin for VSE and VRE infection.ResultsThe fractional inhibitory concentration index (FICI) values of all strains suggested that linezolid showed synergy or additivity in combination with fosfomycin against five of the six strains. Time-kill experiments demonstrated that the combination of linezolid-fosfomycin at 1×MIC or 2×MIC led to higher degree of bacterial killing without regrowth for all isolates tested than each monotherapy. TEM imaging showed that the combination treatment damaged the bacterial cell morphology more obviously than each drug alone. In the Galleria mellonella infection model, the enhanced survival rate of the combination treatment was revealed compared to linezolid monotherapy (P<0.05).ConclusionsOur data manifest that the combination of linezolid and fosfomycin may be a possible therapeutic regimen for VRE infection. The combination displays excellent bacterial killing and inhibits amplification of fosfomycin-resistant subpopulations.


2013 ◽  
Vol 58 (3) ◽  
pp. 1284-1293 ◽  
Author(s):  
Alessandra Oliva ◽  
Ulrika Furustrand Tafin ◽  
Elena Maryka Maiolo ◽  
Safaa Jeddari ◽  
Bertrand Bétrisey ◽  
...  

ABSTRACTEnterococcal implant-associated infections are difficult to treat because antibiotics generally lack activity against enterococcal biofilms. We investigated fosfomycin, rifampin, and their combinations against planktonic and adherentEnterococcus faecalis(ATCC 19433)in vitroand in a foreign-body infection model. The MIC/MBClogvalues were 32/>512 μg/ml for fosfomycin, 4/>64 μg/ml for rifampin, 1/2 μg/ml for ampicillin, 2/>256 μg/ml for linezolid, 16/32 μg/ml for gentamicin, 1/>64 μg/ml for vancomycin, and 1/5 μg/ml for daptomycin. In time-kill studies, fosfomycin was bactericidal at 8× and 16× MIC, but regrowth of resistant strains occurred after 24 h. With the exception of gentamicin, no complete inhibition of growth-related heat production was observed with other antimicrobials on early (3 h) or mature (24 h) biofilms. In the animal model, fosfomycin alone or in combination with daptomycin reduced planktonic counts by ≈4 log10CFU/ml below the levels before treatment. Fosfomycin cleared planktonic bacteria from 74% of cage fluids (i.e., no growth in aspirated fluid) and eradicated biofilm bacteria from 43% of cages (i.e., no growth from removed cages). In combination with gentamicin, fosfomycin cleared 77% and cured 58% of cages; in combination with vancomycin, fosfomycin cleared 33% and cured 18% of cages; in combination with daptomycin, fosfomycin cleared 75% and cured 17% of cages. Rifampin showed no activity on planktonic or adherentE. faecalis, whereas in combination with daptomycin it cured 17% and with fosfomycin it cured 25% of cages. Emergence of fosfomycin resistance was not observedin vivo. In conclusion, fosfomycin showed activity against planktonic and adherentE. faecalis. Its role against enterococcal biofilms should be further investigated, especially in combination with rifampin and/or daptomycin treatment.


2001 ◽  
Vol 45 (9) ◽  
pp. 2420-2426 ◽  
Author(s):  
S. M. Salama ◽  
H. Atwal ◽  
A. Gandhi ◽  
J. Simon ◽  
M. Poglod ◽  
...  

ABSTRACT The in vitro and in vivo activities of four azole compounds belonging to a new series of 2(2,4-difluorophenyl)-3-(4-substituted piperazin-1-yl)-1-(1,2,4-triazol-1-yl) butanol antifungal agents is described. The compounds were selected from a library of azole compounds synthesized by our group. The in vitro activities of Syn2869, Syn2836, Syn2903, and Syn2921 against a panel of over 240 recently collected clinical isolates of yeast and molds were determined, and the results were compared with those obtained with fluconazole (FLC), itraconazole (ITC), and amphotericin B (AMB). The MICs at which 90% of the isolates were inhibited (MIC90s) for the four test compounds for strains of Candida spp. ranged from <0.048 to 0.78 μg/ml. All compounds were also active against FLC-resistant Candida albicans and otherCandida sp. strains. Moreover, MIC90s for strains of Cryptococcus neoformans,Aspergillus spp., Trichophyton spp., andMicrosporum spp. were also low and ranged from <0.048 to 0.39 μg/ml. The test compounds produced a fungistatic pattern during the time-kill kinetic studies. In vivo studies indicated that all four test compounds have good efficacies against C. albicans in a murine systemic infection model and significantly improved the survival rates of the infected mice. The results for Syn2903 were similar to those for FLC, while the other compounds were slightly less effective but had ranges of activities similar to the range of activity of ITC. The compounds were also evaluated against anAspergillus fumigatus systemic infection. Syn2903 was also superior to ITC, whereas the efficacy data for the other compounds were similar to those for ITC. It was concluded from the data generated for this new series of azole compounds in the studies described above that further pharmacokinetic and toxicologic evaluations are warranted prior to selection of a candidate compound for preclinical testing.


Sign in / Sign up

Export Citation Format

Share Document