scholarly journals New 2-Thiopyridines as Potential Candidates for Killing both Actively Growing and Dormant Mycobacterium tuberculosis Cells

2013 ◽  
Vol 58 (1) ◽  
pp. 55-60 ◽  
Author(s):  
Elena Salina ◽  
Olga Ryabova ◽  
Arseny Kaprelyants ◽  
Vadim Makarov

ABSTRACTFromin vivoobservations, a majority ofM. tuberculosiscells in latently infected individuals are in a dormant and probably nonculturable state, display little metabolic activity, and are phenotypically resistant to antibiotics. Despite many attempts, no specific antimicrobials effective against latent tuberculosis have yet been found, partly because of a lack of reliable and adequatein vitromodels for screening of drug candidates. We propose here a novelin vitromodel ofM. tuberculosisdormancy that meets the important criteria of latency, namely, nonculturability of cells, considerable reduction of metabolic activity, and significant phenotypic resistance to the first-line antibiotics rifampin and isoniazid. Using this model, we found a new group of 2-thiopyridine derivatives that had potent antibacterial activity against both actively growing and dormantM. tuberculosiscells. By means of the model ofM. tuberculosisnonculturability, several new 2-thiopyridine derivatives were found to have potent antitubercular activity. The compounds are effective against both active and dormantM. tuberculosiscells. The bactericidal effects of compounds against dormantM. tuberculosiswas confirmed by using three differentin vitromodels of tuberculosis dormancy. The model of nonculturability could be used as a reliable tool for screening drug candidates, and 2-thiopyridine derivatives may be regarded as prominent compounds for further development of new drugs for curing latentM. tuberculosisinfection.

2017 ◽  
Vol 61 (4) ◽  
Author(s):  
Iman Halloum ◽  
Albertus Viljoen ◽  
Varun Khanna ◽  
Derek Craig ◽  
Christiane Bouchier ◽  
...  

ABSTRACT Available chemotherapeutic options are very limited against Mycobacterium abscessus, which imparts a particular challenge in the treatment of cystic fibrosis (CF) patients infected with this rapidly growing mycobacterium. New drugs are urgently needed against this emerging pathogen, but the discovery of active chemotypes has not been performed intensively. Interestingly, however, the repurposing of thiacetazone (TAC), a drug once used to treat tuberculosis, has increased following the deciphering of its mechanism of action and the detection of significantly more potent analogues. We therefore report studies performed on a library of 38 TAC-related derivatives previously evaluated for their antitubercular activity. Several compounds, including D6, D15, and D17, were found to exhibit potent activity in vitro against M. abscessus, Mycobacterium massiliense, and Mycobacterium bolletii clinical isolates from CF and non-CF patients. Similar to TAC in Mycobacterium tuberculosis, the three analogues act as prodrugs in M. abscessus, requiring bioactivation by the EthA enzyme, MAB_0985. Importantly, mutations in the transcriptional TetR repressor MAB_4384, with concomitant upregulation of the divergently oriented adjacent genes encoding an MmpS5/MmpL5 efflux pump system, accounted for high cross-resistance levels among all three compounds. Overall, this study uncovered a new mechanism of drug resistance in M. abscessus and demonstrated that simple structural optimization of the TAC scaffold can lead to the development of new drug candidates against M. abscessus infections.


2012 ◽  
Vol 56 (9) ◽  
pp. 4786-4792 ◽  
Author(s):  
Michelle M. Butler ◽  
Dean L. Shinabarger ◽  
Diane M. Citron ◽  
Ciarán P. Kelly ◽  
Sofya Dvoskin ◽  
...  

ABSTRACTClostridium difficileinfection (CDI) causes moderate to severe disease, resulting in diarrhea and pseudomembranous colitis. CDI is difficult to treat due to production of inflammation-inducing toxins, resistance development, and high probability of recurrence. Only two antibiotics are approved for the treatment of CDI, and the pipeline for therapeutic agents contains few new drugs. MBX-500 is a hybrid antibacterial, composed of an anilinouracil DNA polymerase inhibitor linked to a fluoroquinolone DNA gyrase/topoisomerase inhibitor, with potential as a new therapeutic for CDI treatment. Since MBX-500 inhibits three bacterial targets, it has been previously shown to be minimally susceptible to resistance development. In the present study, thein vitroandin vivoefficacies of MBX-500 were explored against the Gram-positive anaerobe,C. difficile. MBX-500 displayed potency across nearly 50 isolates, including those of the fluoroquinolone-resistant, toxin-overproducing NAP1/027 ribotype, performing as well as comparator antibiotics vancomycin and metronidazole. Furthermore, MBX-500 was a narrow-spectrum agent, displaying poor activity against many other gut anaerobes. MBX-500 was active in acute and recurrent infections in a toxigenic hamster model of CDI, exhibiting full protection against acute infections and prevention of recurrence in 70% of the animals. Hamsters treated with MBX-500 displayed significantly greater weight gain than did those treated with vancomycin. Finally, MBX-500 was efficacious in a murine model of CDI, again demonstrating a fully protective effect and permitting near-normal weight gain in the treated animals. These selective anti-CDI features support the further development of MBX 500 for the treatment of CDI.


2018 ◽  
Vol 62 (4) ◽  
pp. e01505-17 ◽  
Author(s):  
R. S. Jumani ◽  
K. Bessoff ◽  
M. S. Love ◽  
P. Miller ◽  
E. E. Stebbins ◽  
...  

ABSTRACTCryptosporidiosis causes life-threatening diarrhea in children under the age of 5 years and prolonged diarrhea in immunodeficient people, especially AIDS patients. The standard of care, nitazoxanide, is modestly effective in children and ineffective in immunocompromised individuals. In addition to the need for new drugs, better knowledge of drug properties that drivein vivoefficacy is needed to facilitate drug development. We report the identification of a piperazine-based lead compound forCryptosporidiumdrug development, MMV665917, and a new pharmacodynamic method used for its characterization. The identification of MMV665917 from the Medicines for Malaria Venture Malaria Box was followed by dose-response studies,in vitrotoxicity studies, and structure-activity relationship studies using commercial analogues. The potency of this compound againstCryptosporidium parvumIowa and field isolates was comparable to that againstCryptosporidium hominis. Furthermore, unlike nitazoxanide, clofazimine, and paromomycin, MMV665917 appeared to be curative in a NOD SCID gamma mouse model of chronic cryptosporidiosis. MMV665917 was also efficacious in a gamma interferon knockout mouse model of acute cryptosporidiosis. To determine if efficacy in this mouse model of chronic infection might relate to whether compounds are parasiticidal or parasitistatic forC. parvum, we developed a novelin vitroparasite persistence assay. This assay suggested that MMV665917 was parasiticidal, unlike nitazoxanide, clofazimine, and paromomycin. The assay also enabled determination of the concentration of the compound required to maximize the rate of parasite elimination. This time-kill assay can be used to prioritize early-stageCryptosporidiumdrug leads and may aid in planningin vivoefficacy experiments. Collectively, these results identify MMV665917 as a promising lead and establish a new method for characterizing potential anticryptosporidial agents.


2016 ◽  
Vol 61 (1) ◽  
Author(s):  
Edmund V. Capparelli ◽  
Robin Bricker-Ford ◽  
M. John Rogers ◽  
James H. McKerrow ◽  
Sharon L. Reed

ABSTRACT Under an NIH priority to identify new drugs to treat class B parasitic agents, we performed high-throughput screens, which identified the activity of auranofin (Ridaura) against Entamoeba histolytica and Giardia intestinalis, major causes of water- and foodborne outbreaks. Auranofin, an orally administered, gold (Au)-containing compound that was approved by the FDA in 1985 for treatment of rheumatoid arthritis, was effective in vitro and in vivo against E. histolytica and both metronidazole-sensitive and -resistant strains of Giardia. We now report the results of an NIH-sponsored phase I trial to characterize the pharmacokinetics (PK) and safety of auranofin in healthy volunteers using modern techniques to measure gold levels. Subjects received orally 6 mg (p.o.) of auranofin daily, the recommended dose for rheumatoid arthritis, for 7 days and were followed for 126 days. Treatment-associated adverse events were reported by 47% of the subjects, but all were mild and resolved without treatment. The mean gold maximum concentration in plasma (C max) at day 7 was 0.312 μg/ml and the half-life (t 1/2) 35 days, so steady-state blood levels would not be reached in short-term therapy. The highest concentration of gold, 13 μM (auranofin equivalent), or more than 25× the 50% inhibitory concentration (IC50) for E. histolytica and 4× that for Giardia, was in feces at 7 days. Modeling of higher doses (9 and 21 mg/day) was performed for systemic parasitic infections, and plasma gold levels of 0.4 to 1.0 μg/ml were reached after 14 days of treatment at 21 mg/day. This phase I trial supports the idea of the safety of auranofin and provides important PK data to support its potential use as a broad-spectrum antiparasitic drug. (This study has been registered at ClinicalTrials.gov under identifier NCT02089048.)


2014 ◽  
Vol 58 (9) ◽  
pp. 5325-5331 ◽  
Author(s):  
Monalisa Chatterji ◽  
Radha Shandil ◽  
M. R. Manjunatha ◽  
Suresh Solapure ◽  
Vasanthi Ramachandran ◽  
...  

ABSTRACTNew therapeutic strategies against multidrug-resistant (MDR) and extensively drug-resistant (XDR)Mycobacterium tuberculosisare urgently required to combat the global tuberculosis (TB) threat. Toward this end, we previously reported the identification of 1,4-azaindoles, a promising class of compounds with potent antitubercular activity through noncovalent inhibition of decaprenylphosphoryl-β-d-ribose 2′-epimerase (DprE1). Further, this series was optimized to improve its physicochemical properties and pharmacokinetics in mice. Here, we describe the short-listing of a potential clinical candidate, compound 2, that has potent cellular activity, drug-like properties, efficacy in mouse and rat chronic TB infection models, and minimalin vitrosafety risks. We also demonstrate that the compounds, including compound 2, have no antagonistic activity with other anti-TB drugs. Moreover, compound 2 shows synergy with PA824 and TMC207in vitro, and the synergy effect is translatedin vivowith TMC207. The series is predicted to have a low clearance in humans, and the predicted human dose for compound 2 is ≤1 g/day. Altogether, our data suggest that a 1,4-azaindole (compound 2) is a promising candidate for the development of a novel anti-TB drug.


Author(s):  
Mridu Malik ◽  
Yang Yang ◽  
Parinaz Fathi ◽  
Gretchen J. Mahler ◽  
Mandy B. Esch

Identification and approval of new drugs for use in patients requires extensive preclinical studies and clinical trials. Preclinical studies rely on in vitro experiments and animal models of human diseases. The transferability of drug toxicity and efficacy estimates to humans from animal models is being called into question. Subsequent clinical studies often reveal lower than expected efficacy and higher drug toxicity in humans than that seen in animal models. Microphysiological systems (MPS), sometimes called organ or human-on-chip models, present a potential alternative to animal-based models used for drug toxicity screening. This review discusses multi-organ MPS that can be used to model diseases and test the efficacy and safety of drug candidates. The translation of an in vivo environment to an in vitro system requires physiologically relevant organ scaling, vascular dimensions, and appropriate flow rates. Even small changes in those parameters can alter the outcome of experiments conducted with MPS. With many MPS devices being developed, we have outlined some established standards for designing MPS devices and described techniques to validate the devices. A physiologically realistic mimic of the human body can help determine the dose response and toxicity effects of a new drug candidate with higher predictive power.


2012 ◽  
Vol 56 (9) ◽  
pp. 4685-4692 ◽  
Author(s):  
Fabián E. Sáenz ◽  
Tina Mutka ◽  
Kenneth Udenze ◽  
Ayoade M. J. Oduola ◽  
Dennis E. Kyle

ABSTRACTNew drugs to treat malaria must act rapidly and be highly potent against asexual blood stages, well tolerated, and affordable to residents of regions of endemicity. This was the case with chloroquine (CQ), a 4-aminoquinoline drug used for the prevention and treatment of malaria. However, since the 1960s,Plasmodium falciparumresistance to this drug has spread globally, and more recently, emerging resistance to CQ byPlasmodium vivaxthreatens the health of 70 to 320 million people annually. Despite the emergence of CQ resistance, synthetic quinoline derivatives remain validated leads for new drug discovery, especially if they are effective against CQ-resistant strains of malaria. In this study, we investigated the activities of two novel 4-aminoquinoline derivatives, TDR 58845,N1-(7-chloro-quinolin-4-yl)-2-methyl-propane-1,2-diamine, and TDR 58846,N1-(7-chloro-quinolin-4-yl)-2,N2,N2-trimethylpropane-1,2-diamine and found them to be active againstP. falciparumin vitroandPlasmodium bergheiin vivo. TheP. falciparumclones and isolates tested were susceptible to TDR 58845 and TDR 58846 (50% inhibitory concentrations [IC50s] ranging from 5.52 to 89.8 nM), including the CQ-resistant reference clone W2 and two multidrug-resistant parasites recently isolated from Thailand and Cambodia. Moreover, these 4-aminoquinolines were active against early and lateP. falciparumgametocyte stages and cured BALB/c mice infected withP. berghei. TDR 58845 and TDR 58846 at 40 mg/kg were sufficient to cure mice, and total doses of 480 mg/kg of body weight were well tolerated. Our findings suggest these novel 4-aminoquinolines should be considered for development as potent antimalarials that can be used in combination to treat multidrug-resistantP. falciparumandP. vivax.


Parasitology ◽  
2004 ◽  
Vol 129 (5) ◽  
pp. 525-542 ◽  
Author(s):  
S. HOUT ◽  
N. AZAS ◽  
A. DARQUE ◽  
M. ROBIN ◽  
C. DI GIORGIO ◽  
...  

Malaria is a major health concern particularly in Africa which has about 90% of the worldwide annual clinical cases. The increasing number of drug-resistantPlasmodium falciparumjustifies the search for new drugs in this field. Antimalarial activity of 2-substituted 6-nitro- and 6-amino-benzothiazoles and their anthranilic acids has been tested. Anin vitrostudy has been performed on W2 and 3D7 strains ofP. falciparumand on clinical isolates from malaria-infected patients. Toxicity has been assessed on THP1 human monocytic cells. For the most active drug candidates, thein vitrostudy was followed byin vivoassaysonP. berghei-infected mice and byin vitroassays in order to determine the stage-dependency and the mechanism of action. Of 39 derivatives testedin vitro, 2 had specific antimalarial properties. Each compound was active on all stages of the parasite, but one was markedly active on mature schizonts, while the other was more active on young schizont forms. Both drugs were also active on mitochondrial membrane potential.In vivodata confirmed efficiency with a sustained decrease of parasitaemia. Products A12 and C7 may be considered as potential antimalarial worthy of further chemical and biological research.


2019 ◽  
Vol 11 (21) ◽  
pp. 2779-2802 ◽  
Author(s):  
Andria Papageorgiou ◽  
Angeliki-Sofia Foscolos ◽  
Ioannis P Papanastasiou ◽  
Marilena Vlachou ◽  
Angeliki Siamidi ◽  
...  

Aim: There is a necessity for new drugs to be more efficient than today's standard due to the emergence of drug-resistant strains of Mycobacterium tuberculosis (Mtb) Results/methodology: 12 new isoniazid-based adamantane derivatives were synthesized and tested for their antitubercular activity. The pharmacological test results and the aqueous dissolution profile of representative examples of the new molecules are in agreement with the computational results obtained from docking poses and molecular dynamics simulations on the tested compounds. Conclusion: Among their congeners, the adamantane isonicotinoyl hydrazones Ia and Ih exhibit the best antitubercular activity (MIC = 0.04 μg/ml) and the lowest cytotoxicity (selectivity index ≥2500). These results are useful for in future in vivo studies.


2012 ◽  
Vol 56 (10) ◽  
pp. 5142-5148 ◽  
Author(s):  
Catherine Vilchèze ◽  
William R. Jacobs

ABSTRACTThe challenges of developing new drugs to treat tuberculosis (TB) are indicated by the relatively small number of candidates entering clinical trials in the past decade. To overcome these issues, we reexamined two FDA-approved antibacterial drugs, sulfamethoxazole (SMX) and trimethoprim (TMP), for use in TB treatment. SMX and TMP inhibit folic acid biosynthesis and are used in combination to treat infections of the respiratory, urinary, and gastrointestinal tracts. The MICs of SMX and TMP, alone and in combination, were determined for drug-susceptible, multidrug-resistant (MDR), and extensively drug-resistantMycobacterium tuberculosisstrains. While TMP alone was not effective againstM. tuberculosis, the combination of TMP and SMX was bacteriostatic againstM. tuberculosis. Surprisingly, the combination of SMX and TMP was also active against a subset of MDRM. tuberculosisstrains. Treatment ofM. tuberculosiswith TMP-SMX and a first-line anti-TB drug, either isoniazid or rifampin, was bactericidal, demonstrating that the combination of TMP and SMX with isoniazid or rifampin was not antagonistic. Moreover, the addition of SMX-TMP in combination with either isoniazid or rifampin also prevented the emergence of drug resistancein vitro. In conclusion, this study further illustrates the opportunity to reevaluate the activity of TMP-SMXin vivoto prevent the emergence of drug-resistantM. tuberculosis.


Sign in / Sign up

Export Citation Format

Share Document