scholarly journals A Novel Piperazine-Based Drug Lead for Cryptosporidiosis from the Medicines for Malaria Venture Open-Access Malaria Box

2018 ◽  
Vol 62 (4) ◽  
pp. e01505-17 ◽  
Author(s):  
R. S. Jumani ◽  
K. Bessoff ◽  
M. S. Love ◽  
P. Miller ◽  
E. E. Stebbins ◽  
...  

ABSTRACTCryptosporidiosis causes life-threatening diarrhea in children under the age of 5 years and prolonged diarrhea in immunodeficient people, especially AIDS patients. The standard of care, nitazoxanide, is modestly effective in children and ineffective in immunocompromised individuals. In addition to the need for new drugs, better knowledge of drug properties that drivein vivoefficacy is needed to facilitate drug development. We report the identification of a piperazine-based lead compound forCryptosporidiumdrug development, MMV665917, and a new pharmacodynamic method used for its characterization. The identification of MMV665917 from the Medicines for Malaria Venture Malaria Box was followed by dose-response studies,in vitrotoxicity studies, and structure-activity relationship studies using commercial analogues. The potency of this compound againstCryptosporidium parvumIowa and field isolates was comparable to that againstCryptosporidium hominis. Furthermore, unlike nitazoxanide, clofazimine, and paromomycin, MMV665917 appeared to be curative in a NOD SCID gamma mouse model of chronic cryptosporidiosis. MMV665917 was also efficacious in a gamma interferon knockout mouse model of acute cryptosporidiosis. To determine if efficacy in this mouse model of chronic infection might relate to whether compounds are parasiticidal or parasitistatic forC. parvum, we developed a novelin vitroparasite persistence assay. This assay suggested that MMV665917 was parasiticidal, unlike nitazoxanide, clofazimine, and paromomycin. The assay also enabled determination of the concentration of the compound required to maximize the rate of parasite elimination. This time-kill assay can be used to prioritize early-stageCryptosporidiumdrug leads and may aid in planningin vivoefficacy experiments. Collectively, these results identify MMV665917 as a promising lead and establish a new method for characterizing potential anticryptosporidial agents.

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Miao-Miao Zhao ◽  
Wei-Li Yang ◽  
Fang-Yuan Yang ◽  
Li Zhang ◽  
Wei-Jin Huang ◽  
...  

AbstractTo discover new drugs to combat COVID-19, an understanding of the molecular basis of SARS-CoV-2 infection is urgently needed. Here, for the first time, we report the crucial role of cathepsin L (CTSL) in patients with COVID-19. The circulating level of CTSL was elevated after SARS-CoV-2 infection and was positively correlated with disease course and severity. Correspondingly, SARS-CoV-2 pseudovirus infection increased CTSL expression in human cells in vitro and human ACE2 transgenic mice in vivo, while CTSL overexpression, in turn, enhanced pseudovirus infection in human cells. CTSL functionally cleaved the SARS-CoV-2 spike protein and enhanced virus entry, as evidenced by CTSL overexpression and knockdown in vitro and application of CTSL inhibitor drugs in vivo. Furthermore, amantadine, a licensed anti-influenza drug, significantly inhibited CTSL activity after SARS-CoV-2 pseudovirus infection and prevented infection both in vitro and in vivo. Therefore, CTSL is a promising target for new anti-COVID-19 drug development.


2012 ◽  
Vol 56 (9) ◽  
pp. 4786-4792 ◽  
Author(s):  
Michelle M. Butler ◽  
Dean L. Shinabarger ◽  
Diane M. Citron ◽  
Ciarán P. Kelly ◽  
Sofya Dvoskin ◽  
...  

ABSTRACTClostridium difficileinfection (CDI) causes moderate to severe disease, resulting in diarrhea and pseudomembranous colitis. CDI is difficult to treat due to production of inflammation-inducing toxins, resistance development, and high probability of recurrence. Only two antibiotics are approved for the treatment of CDI, and the pipeline for therapeutic agents contains few new drugs. MBX-500 is a hybrid antibacterial, composed of an anilinouracil DNA polymerase inhibitor linked to a fluoroquinolone DNA gyrase/topoisomerase inhibitor, with potential as a new therapeutic for CDI treatment. Since MBX-500 inhibits three bacterial targets, it has been previously shown to be minimally susceptible to resistance development. In the present study, thein vitroandin vivoefficacies of MBX-500 were explored against the Gram-positive anaerobe,C. difficile. MBX-500 displayed potency across nearly 50 isolates, including those of the fluoroquinolone-resistant, toxin-overproducing NAP1/027 ribotype, performing as well as comparator antibiotics vancomycin and metronidazole. Furthermore, MBX-500 was a narrow-spectrum agent, displaying poor activity against many other gut anaerobes. MBX-500 was active in acute and recurrent infections in a toxigenic hamster model of CDI, exhibiting full protection against acute infections and prevention of recurrence in 70% of the animals. Hamsters treated with MBX-500 displayed significantly greater weight gain than did those treated with vancomycin. Finally, MBX-500 was efficacious in a murine model of CDI, again demonstrating a fully protective effect and permitting near-normal weight gain in the treated animals. These selective anti-CDI features support the further development of MBX 500 for the treatment of CDI.


2020 ◽  
Vol 88 (11) ◽  
Author(s):  
Marloes I. Hofstee ◽  
Martijn Riool ◽  
Igors Terjajevs ◽  
Keith Thompson ◽  
Martin J. Stoddart ◽  
...  

ABSTRACT Staphylococcus aureus is a prominent human pathogen in bone and soft-tissue infections. Pathophysiology involves abscess formation, which consists of central staphylococcal abscess communities (SACs), surrounded by a fibrin pseudocapsule and infiltrating immune cells. Protection against the ingress of immune cells such as neutrophils, or tolerance to antibiotics, remains largely unknown for SACs and is limited by the lack of availability of in vitro models. We describe a three-dimensional in vitro model of SACs grown in a human plasma-supplemented collagen gel. The in vitro SACs reached their maximum size by 24 h and elaborated a fibrin pseudocapsule, as confirmed by electron and immunofluorescence microscopy. The in vitro SACs tolerated 100× the MIC of gentamicin alone and in combination with rifampin, while planktonic controls and mechanically dispersed SACs were efficiently killed. To simulate a host response, SACs were exposed to differentiated PLB-985 neutrophil-like (dPLB) cells and to primary human neutrophils at an early stage of SAC formation or after maturation at 24 h. Both cell types were unable to clear mature in vitro SACs, but dPLB cells prevented SAC growth upon early exposure before pseudocapsule maturation. Neutrophil exposure after plasmin pretreatment of the SACs resulted in a significant decrease in the number of bacteria within the SACs. The in vitro SAC model mimics key in vivo features, offers a new tool to study host-pathogen interactions and drug efficacy assessment, and has revealed the functionality of the S. aureus pseudocapsule in protecting the bacteria from host phagocytic responses and antibiotics.


2011 ◽  
Vol 193 (22) ◽  
pp. 6358-6365 ◽  
Author(s):  
Marcin Wolański ◽  
Rafał Donczew ◽  
Agnieszka Kois-Ostrowska ◽  
Paweł Masiewicz ◽  
Dagmara Jakimowicz ◽  
...  

AdpA is a key regulator of morphological differentiation inStreptomyces. In contrast toStreptomyces griseus, relatively little is known about AdpA protein functions inStreptomyces coelicolor. Here, we report for the first time the translation accumulation profile of theS. coelicoloradpA(adpASc) gene; the level ofS. coelicolorAdpA (AdpASc) increased, reaching a maximum in the early stage of aerial mycelium formation (after 36 h), and remained relatively stable for the next several hours (48 to 60 h), and then the signal intensity decreased considerably. AdpAScspecifically binds theadpAScpromoter regionin vitroandin vivo, suggesting that its expression is autoregulated; surprisingly, in contrast toS. griseus, the protein presumably acts as a transcriptional activator. We also demonstrate a direct influence of AdpAScon the expression of several genes whose products play key roles in the differentiation ofS. coelicolor: STI, a protease inhibitor; RamR, an atypical response regulator that itself activates expression of the genes for a small modified peptide that is required for aerial growth; and ClpP1, an ATP-dependent protease. The diverse influence of AdpAScprotein on the expression of the analyzed genes presumably results mainly from different affinities of AdpAScprotein to individual promoters.


2013 ◽  
Vol 58 (3) ◽  
pp. 1603-1614 ◽  
Author(s):  
Suresh Kumar Gorla ◽  
Nina N. McNair ◽  
Guangyi Yang ◽  
Song Gao ◽  
Ming Hu ◽  
...  

ABSTRACTCryptosporidiumparasites are a major cause of diarrhea and malnutrition in the developing world, a frequent cause of waterborne disease in the developed world, and a potential bioterrorism agent. Currently, available treatment is limited, andCryptosporidiumdrug discovery remains largely unsuccessful. As a result, the pharmacokinetic properties required forin vivoefficacy have not been established. We have been engaged in aCryptosporidiumdrug discovery program targeting IMP dehydrogenase (CpIMPDH). Here, we report the activity of eight potent and selective inhibitors ofCpIMPDH in the interleukin-12 (IL-12) knockout mouse model, which mimics acute human cryptosporidiosis. Two compounds displayed significant antiparasitic activity, validatingCpIMPDH as a drug target. The best compound, P131 (250 mg/kg of body weight/day), performed equivalently to paromomycin (2,000 mg/kg/day) when administered in a single dose and better than paromomycin when administered in three daily doses. One compound, A110, appeared to promoteCryptosporidiuminfection. The pharmacokinetic, uptake, and permeability properties of the eight compounds were measured. P131 had the lowest systemic distribution but accumulated to high concentrations within intestinal cells. A110 had the highest systemic distribution. These observations suggest that systemic distribution is not required, and may be a liability, forin vivoantiparasitic activity. Intriguingly, A110 caused specific alterations in fecal microbiota that were not observed with P131 or vehicle alone. Such changes may explain how A110 promotes parasitemia. Collectively, these observations suggest a blueprint for the development of anticryptosporidial therapy.


2016 ◽  
Vol 61 (1) ◽  
Author(s):  
Edmund V. Capparelli ◽  
Robin Bricker-Ford ◽  
M. John Rogers ◽  
James H. McKerrow ◽  
Sharon L. Reed

ABSTRACT Under an NIH priority to identify new drugs to treat class B parasitic agents, we performed high-throughput screens, which identified the activity of auranofin (Ridaura) against Entamoeba histolytica and Giardia intestinalis, major causes of water- and foodborne outbreaks. Auranofin, an orally administered, gold (Au)-containing compound that was approved by the FDA in 1985 for treatment of rheumatoid arthritis, was effective in vitro and in vivo against E. histolytica and both metronidazole-sensitive and -resistant strains of Giardia. We now report the results of an NIH-sponsored phase I trial to characterize the pharmacokinetics (PK) and safety of auranofin in healthy volunteers using modern techniques to measure gold levels. Subjects received orally 6 mg (p.o.) of auranofin daily, the recommended dose for rheumatoid arthritis, for 7 days and were followed for 126 days. Treatment-associated adverse events were reported by 47% of the subjects, but all were mild and resolved without treatment. The mean gold maximum concentration in plasma (C max) at day 7 was 0.312 μg/ml and the half-life (t 1/2) 35 days, so steady-state blood levels would not be reached in short-term therapy. The highest concentration of gold, 13 μM (auranofin equivalent), or more than 25× the 50% inhibitory concentration (IC50) for E. histolytica and 4× that for Giardia, was in feces at 7 days. Modeling of higher doses (9 and 21 mg/day) was performed for systemic parasitic infections, and plasma gold levels of 0.4 to 1.0 μg/ml were reached after 14 days of treatment at 21 mg/day. This phase I trial supports the idea of the safety of auranofin and provides important PK data to support its potential use as a broad-spectrum antiparasitic drug. (This study has been registered at ClinicalTrials.gov under identifier NCT02089048.)


2016 ◽  
Vol 198 (8) ◽  
pp. 1281-1293 ◽  
Author(s):  
Julien Herrou ◽  
Daniel M. Czyż ◽  
Jonathan W. Willett ◽  
Hye-Sook Kim ◽  
Gekleng Chhor ◽  
...  

ABSTRACTThe general stress response (GSR) system of the intracellular pathogenBrucella abortuscontrols the transcription of approximately 100 genes in response to a range of stress cues. The core genetic regulatory components of the GSR are required forB. abortussurvival under nonoptimal growth conditionsin vitroand for maintenance of chronic infection in anin vivomouse model. The functions of the majority of the genes in the GSR transcriptional regulon remain undefined.bab1_1070is among the most highly regulated genes in this regulon: its transcription is activated 20- to 30-fold by the GSR system under oxidative conditionsin vitro. We have solved crystal structures of Bab1_1070 and demonstrate that it forms a homotetrameric complex that resembles those of WrbA-type NADH:quinone oxidoreductases, which are members of the flavodoxin protein family. However,B. abortusWrbA-relatedprotein (WrpA) does not bind flavin cofactors with a high affinity and does not function as an NADH:quinone oxidoreductasein vitro. Soaking crystals with flavin mononucleotide (FMN) revealed a likely low-affinity binding site adjacent to the canonical WrbA flavin binding site. Deletion ofwrpA(ΔwrpA) does not compromise cell survival under acute oxidative stressin vitroor attenuate infection in cell-based or mouse models. However, a ΔwrpAstrain does elicit increased splenomegaly in a mouse model, suggesting that WrpA modulatesB. abortusinteraction with its mammalian host. Despite high structural homology with canonical WrbA proteins, we propose thatB. abortusWrpA represents a functionally distinct member of the diverse flavodoxin family.IMPORTANCEBrucella abortusis an etiological agent of brucellosis, which is among the most common zoonotic diseases worldwide. The general stress response (GSR) regulatory system ofB. abortuscontrols the transcription of approximately 100 genes and is required for maintenance of chronic infection in a murine model; the majority of GSR-regulated genes remain uncharacterized. We presentin vitroandin vivofunctional and structural analyses of WrpA, whose expression is strongly induced by GSR under oxidative conditions. Though WrpA is structurally related to NADH:quinone oxidoreductases, it does not bind redox cofactors in solution, nor does it exhibit oxidoreductase activityin vitro. However, WrpA does affect spleen inflammation in a murine infection model. Our data provide evidence that WrpA forms a new functional class of WrbA/flavodoxin family proteins.


2018 ◽  
Vol 63 (3) ◽  
Author(s):  
Paul R. Gilson ◽  
William Nguyen ◽  
William A. Poole ◽  
Jose E. Teixeira ◽  
Jennifer K. Thompson ◽  
...  

ABSTRACT A series of 4-amino 2-anilinoquinazolines optimized for activity against the most lethal malaria parasite of humans, Plasmodium falciparum, was evaluated for activity against other human Plasmodium parasites and related apicomplexans that infect humans and animals. Four of the most promising compounds from the 4-amino 2-anilinoquinazoline series were equally as effective against the asexual blood stages of the zoonotic P. knowlesi, suggesting that they could also be effective against the closely related P. vivax, another important human pathogen. The 2-anilinoquinazoline compounds were also potent against an array of P. falciparum parasites resistant to clinically available antimalarial compounds, although slightly less so than against the drug-sensitive 3D7 parasite line. The apicomplexan parasites Toxoplasma gondii, Babesia bovis, and Cryptosporidium parvum were less sensitive to the 2-anilinoquinazoline series with a 50% effective concentration generally in the low micromolar range, suggesting that the yet to be discovered target of these compounds is absent or highly divergent in non-Plasmodium parasites. The 2-anilinoquinazoline compounds act as rapidly as chloroquine in vitro and when tested in rodents displayed a half-life that contributed to the compound’s capacity to clear P. falciparum blood stages in a humanized mouse model. At a dose of 50 mg/kg of body weight, adverse effects to the humanized mice were noted, and evaluation against a panel of experimental high-risk off targets indicated some potential off-target activity. Further optimization of the 2-anilinoquinazoline antimalarial class will concentrate on improving in vivo efficacy and addressing adverse risk.


2012 ◽  
Vol 80 (8) ◽  
pp. 2948-2955 ◽  
Author(s):  
Yun Sun ◽  
Wen-Jiang Zheng ◽  
Yong-Hua Hu ◽  
Bo-Guang Sun ◽  
Li Sun

ABSTRACTEdwardsiella tarda, a Gram-negative bacterium, is a severe fish pathogen that can also infect humans. In this study, we identified, viain vivo-induced antigen technology, anE. tardaantigen, Eta1, and analyzed its function in a Japanese flounder (Paralichthys olivaceus) model. Eta1 is composed of 226 residues and shares homology with putative bacterial adhesins. Quantitative real-time reverse transcriptase (RT)-PCR analysis indicated that when culturedin vitro,eta1expression was growth phase dependent and reached maximum at mid-logarithmic phase. During infection of flounder lymphocytes,eta1expression was drastically increased at the early stage of infection. Compared to the wild type, theeta1-defective mutant, TXeta1, was unaffected in growth but exhibited attenuated overall virulence, reduced tissue dissemination and colonization capacity, and impaired ability to invade flounder lymphocytes and to block the immune response of host cells. The lost virulence of TXeta1 was restored when a functionaleta1gene was reintroduced into the strain. Western blot and immunodetection analyses showed that Eta1 is localized to the outer membrane and exposed on the surface ofE. tardaand that recombinant Eta1 (rEta1) was able to interact with flounder lymphocytes. Consistent with these observations, antibody blocking of Eta1 inhibitedE. tardainfection at the cellular level. Furthermore, when used as a subunit vaccine, rEta1 induced strong protective immunity in flounder against lethalE. tardachallenge. Taken together, these results indicate that Eta1 is anin vivo-induced antigen that mediates pathogen-host interaction and, as a result, is required for optimal bacterial infection.


2013 ◽  
Vol 57 (12) ◽  
pp. 6276-6283 ◽  
Author(s):  
Frank Oechslin ◽  
Jean Daraspe ◽  
Marlyse Giddey ◽  
Philippe Moreillon ◽  
Grégory Resch

ABSTRACTBeta-hemolyticStreptococcus agalactiaeis the leading cause of bacteremia and invasive infections. These diseases are treated with β-lactams or macrolides, but the emergence of less susceptible and even fully resistant strains is a cause for concern. New bacteriophage lysins could be promising alternatives against such organisms. They hydrolyze the bacterial peptidoglycan at the end of the phage cycle, in order to release the phage progeny. By using a bioinformatic approach to screen several beta-hemolytic streptococci, a gene coding for a lysin was identified on a prophage carried byStreptococcus dysgalactiaesubsp.equisimilisSK1249. The gene product, named PlySK1249, harbored an original three-domain structure with a central cell wall-binding domain surrounded by an N-terminal amidase and a C-terminal CHAP domain. Purified PlySK1249 was highly lytic and bactericidal forS. dysgalactiae(2-log10CFU/ml decrease within 15 min). Moreover, it also efficiently killedS. agalactiae(1.5-log10CFU/ml decrease within 15 min) but not several streptococcal commensal species. We further investigated the activity of PlySK1249 in a mouse model ofS. agalactiaebacteremia. Eighty percent of the animals (n= 10) challenged intraperitoneally with 106CFU ofS. agalactiaedied within 72 h, whereas repeated injections of PlySK1249 (45 mg/kg 3 times within 24 h) significantly protected the mice (P< 0.01). Thus, PlySK1249, which was isolated fromS. dysgalactiae, demonstrated high cross-lytic activity againstS. agalactiaebothin vitroandin vivo. These encouraging results indicated that PlySK1249 might represent a good candidate to be developed as a new enzybiotic for the treatment of systemicS. agalactiaeinfections.


Sign in / Sign up

Export Citation Format

Share Document