scholarly journals Edwardsiella tarda Eta1, anIn Vivo-Induced Antigen That Is Involved in Host Infection

2012 ◽  
Vol 80 (8) ◽  
pp. 2948-2955 ◽  
Author(s):  
Yun Sun ◽  
Wen-Jiang Zheng ◽  
Yong-Hua Hu ◽  
Bo-Guang Sun ◽  
Li Sun

ABSTRACTEdwardsiella tarda, a Gram-negative bacterium, is a severe fish pathogen that can also infect humans. In this study, we identified, viain vivo-induced antigen technology, anE. tardaantigen, Eta1, and analyzed its function in a Japanese flounder (Paralichthys olivaceus) model. Eta1 is composed of 226 residues and shares homology with putative bacterial adhesins. Quantitative real-time reverse transcriptase (RT)-PCR analysis indicated that when culturedin vitro,eta1expression was growth phase dependent and reached maximum at mid-logarithmic phase. During infection of flounder lymphocytes,eta1expression was drastically increased at the early stage of infection. Compared to the wild type, theeta1-defective mutant, TXeta1, was unaffected in growth but exhibited attenuated overall virulence, reduced tissue dissemination and colonization capacity, and impaired ability to invade flounder lymphocytes and to block the immune response of host cells. The lost virulence of TXeta1 was restored when a functionaleta1gene was reintroduced into the strain. Western blot and immunodetection analyses showed that Eta1 is localized to the outer membrane and exposed on the surface ofE. tardaand that recombinant Eta1 (rEta1) was able to interact with flounder lymphocytes. Consistent with these observations, antibody blocking of Eta1 inhibitedE. tardainfection at the cellular level. Furthermore, when used as a subunit vaccine, rEta1 induced strong protective immunity in flounder against lethalE. tardachallenge. Taken together, these results indicate that Eta1 is anin vivo-induced antigen that mediates pathogen-host interaction and, as a result, is required for optimal bacterial infection.

2011 ◽  
Vol 79 (10) ◽  
pp. 4081-4087 ◽  
Author(s):  
Craig Weinkauf ◽  
Ryan Salvador ◽  
Mercio PereiraPerrin

ABSTRACTTrypanosoma cruzi, the agent of Chagas' disease, infects a variety of mammalian cells in a process that includes multiple cycles of intracellular division and differentiation starting with host receptor recognition by a parasite ligand(s). Earlier work in our laboratory showed that the neurotrophin-3 (NT-3) receptor TrkC is activated byT. cruzisurfacetrans-sialidase, also known as parasite-derived neurotrophic factor (PDNF). However, it has remained unclear whether TrkC is used byT. cruzito enter host cells. Here, we show that a neuronal cell line (PC12-NNR5) relatively resistant toT. cruzibecame highly susceptible to infection when overexpressing human TrkC but not human TrkB. Furthermore,trkCtransfection conferred an ∼3.0-fold intracellular growth advantage. Sialylation-deficient Chinese hamster ovarian (CHO) epithelial cell lines Lec1 and Lec2 also became much more permissive toT. cruziafter transfection with thetrkCgene. Additionally, NT-3 specifically blockedT. cruziinfection of the TrkC-NNR5 transfectants and of naturally permissive TrkC-bearing Schwann cells and astrocytes, as did recombinant PDNF. Two specific inhibitors of Trk autophosphorylation (K252a and AG879) and inhibitors of Trk-induced MAPK/Erk (U0126) and Akt kinase (LY294002) signaling, but not an inhibitor of insulin-like growth factor 1 receptor, abrogated TrkC-mediated cell invasion. Antibody to TrkC blockedT. cruziinfection of the TrkC-NNR5 transfectants and of cells that naturally express TrkC. The TrkC antibody also significantly and specifically reduced cutaneous infection in a mouse model of acute Chagas' disease. TrkC is ubiquitously expressed in the peripheral and central nervous systems, and in nonneural cells infected byT. cruzi, including cardiac and gastrointestinal muscle cells. Thus, TrkC is implicated as a functional PDNF receptor in cell entry, independently of sialic acid recognition, mediating broadT. cruziinfection bothin vitroandin vivo.


2014 ◽  
Vol 82 (7) ◽  
pp. 2890-2901 ◽  
Author(s):  
Marilena Gallotta ◽  
Giovanni Gancitano ◽  
Giampiero Pietrocola ◽  
Marirosa Mora ◽  
Alfredo Pezzicoli ◽  
...  

ABSTRACTGroup A streptococcus (GAS) is a human pathogen causing a wide repertoire of mild and severe diseases for which no vaccine is yet available. We recently reported the identification of three protein antigens that in combination conferred wide protection against GAS infection in mice. Here we focused our attention on the characterization of one of these three antigens, Spy0269, a highly conserved, surface-exposed, and immunogenic protein of unknown function. Deletion of thespy0269gene in a GAS M1 isolate resulted in very long bacterial chains, which is indicative of an impaired capacity of the knockout mutant to properly divide. Confocal microscopy and immunoprecipitation experiments demonstrated that the protein was mainly localized at the cell septum and could interactin vitrowith the cell division protein FtsZ, leading us to hypothesize that Spy0269 is a member of the GAS divisome machinery. Predicted structural domains and sequence homologies with known streptococcal adhesins suggested that this antigen could also play a role in mediating GAS interaction with host cells. This hypothesis was confirmed by showing that recombinant Spy0269 could bind to mammalian epithelial cellsin vitroand thatLactococcus lactisexpressing Spy0269 on its cell surface could adhere to mammalian cellsin vitroand to mice nasal mucosain vivo. On the basis of these data, we believe that Spy0269 is involved both in bacterial cell division and in adhesion to host cells and we propose to rename this multifunctional moonlighting protein as SpyAD (StreptococcuspyogenesAdhesion andDivision protein).


2020 ◽  
Author(s):  
María A. Duque-Correa ◽  
David Goulding ◽  
Claire Cormie ◽  
Catherine Sharpe ◽  
Judit Gali Moya ◽  
...  

ABSTRACTHundreds of millions of people are infected with whipworms (Trichuris trichiura), large metazoan parasites that live in the caecum and proximal colon. Whipworms inhabit distinct multi-intracellular epithelial burrows that have been described as syncytial tunnels. However, the interactions between first-stage (L1) larvae and the host epithelia that determine parasite invasion and establishment in the syncytium remain unclear. In vivo experiments investigating these events have been severely hampered by the limited in situ accessibility to intracellular infective larvae at the bottom of the crypts of Lieberkühn, and the lack of genetic tools such as fluorescent organisms that are readily available for other pathogens but not parasitic nematodes. Moreover, cell lines, which do not mimic the complexity of the intestinal epithelium, have been unsuccessful in supporting infection by whipworm larvae. Here, we show that caecaloids grown in an open crypt-like conformation recapitulate the caecal epithelium. Using this system, we establish in vitro infections with T. muris L1 larvae for the first-time, and provide clear evidence that syncytial tunnels are formed at this early stage. We show that larval whipworms are completely intracellular but woven through multiple cells. Using the caecaloids, we are able to visualise the pathways taken by the larvae as they burrow through the epithelial cells. We also demonstrate that larvae degrade the mucus layers overlaying the epithelium, enabling them to access the cells below. We show that early syncytial tunnels are composed of enterocytes and goblet cells that are alive and actively interacting with the larvae during the first 24 h of the infection. Progression of infection results in damage to host cells and by 72 h post-infection, we show that desmosomes of cells from infected epithelium widen and some host cells appear to become liquified. Collectively, our work unravels processes mediating the intestinal epithelium invasion by whipworms and reveals new specific interactions between the host and the parasite that allow the whipworm to establish on its multi-intracellular niche. Our study demonstrates that caecaloids can be used as a relevant in vitro model to investigate the infection biology of T. muris during the early colonisation of its host.


2020 ◽  
Author(s):  
Hua Sang ◽  
Jiali Liu ◽  
Fang Zhou ◽  
Xiaofang Zhang ◽  
Jingwei Zhang ◽  
...  

<p></p><p>Key events including antibody-antigen affinity, ADC internalization, trafficking and lysosomal proteolysis-mediated payload release combinatorially determine the therapeutic efficacy and safety for ADCs. Nevertheless, a universal technology that efficiently and conveniently evaluates the involvement of these above elements to ADC payload release and hence the final therapeutic outcomes for mechanistic studies and quality assessment is lacking. Considering the plethora of ADC candidates under development owing to the ever-evolving linker and drug chemistry, we developed a TArget-Responsive Subcellular Catabolism (TARSC) approach that measures catabolites kinetics for given ADCs and elaborates how each individual step ranging from antigen binding to lysosomal proteolysis affects ADC catabolism by targeted interferences. Using a commercial and a biosimilar ado-trastuzumab emtansine (T-DM1) as model ADCs, we recorded unequivocal catabolites kinetics for the two T-DM1s in the presence and absence of the targeted interferences. Their negligible differences in TARSC profiles fitting with their undifferentiated therapeutic outcomes suggested by <i>in vitro</i> viability assays and <i>in vivo</i> tumor growth assays, highlighting TARSC analysis as a good indicator of ADC efficacy and bioequivalency. Lastly, we demonstrated the use of TARSC in assessing payload release efficiency for a new Trastuzumab-toxin conjugate. Collectively, we demonstrated the use of TARSC in characterizing ADC catabolism at (sub)cellular level, and in systematically depicting whether given target proteins affect ADC payload release and hence therapeutic efficacy. We anticipate its future use in high-throughput screening, quality assessment and mechanistic understanding of ADCs for drug R&D before proceeding to costly <i>in vivo</i> experiments.</p><br><p></p>


2018 ◽  
Vol 62 (4) ◽  
pp. e01505-17 ◽  
Author(s):  
R. S. Jumani ◽  
K. Bessoff ◽  
M. S. Love ◽  
P. Miller ◽  
E. E. Stebbins ◽  
...  

ABSTRACTCryptosporidiosis causes life-threatening diarrhea in children under the age of 5 years and prolonged diarrhea in immunodeficient people, especially AIDS patients. The standard of care, nitazoxanide, is modestly effective in children and ineffective in immunocompromised individuals. In addition to the need for new drugs, better knowledge of drug properties that drivein vivoefficacy is needed to facilitate drug development. We report the identification of a piperazine-based lead compound forCryptosporidiumdrug development, MMV665917, and a new pharmacodynamic method used for its characterization. The identification of MMV665917 from the Medicines for Malaria Venture Malaria Box was followed by dose-response studies,in vitrotoxicity studies, and structure-activity relationship studies using commercial analogues. The potency of this compound againstCryptosporidium parvumIowa and field isolates was comparable to that againstCryptosporidium hominis. Furthermore, unlike nitazoxanide, clofazimine, and paromomycin, MMV665917 appeared to be curative in a NOD SCID gamma mouse model of chronic cryptosporidiosis. MMV665917 was also efficacious in a gamma interferon knockout mouse model of acute cryptosporidiosis. To determine if efficacy in this mouse model of chronic infection might relate to whether compounds are parasiticidal or parasitistatic forC. parvum, we developed a novelin vitroparasite persistence assay. This assay suggested that MMV665917 was parasiticidal, unlike nitazoxanide, clofazimine, and paromomycin. The assay also enabled determination of the concentration of the compound required to maximize the rate of parasite elimination. This time-kill assay can be used to prioritize early-stageCryptosporidiumdrug leads and may aid in planningin vivoefficacy experiments. Collectively, these results identify MMV665917 as a promising lead and establish a new method for characterizing potential anticryptosporidial agents.


2013 ◽  
Vol 81 (10) ◽  
pp. 3527-3533 ◽  
Author(s):  
Chong Wang ◽  
Yong-hua Hu ◽  
Bo-guang Sun ◽  
Jun Li ◽  
Li Sun

ABSTRACTEdwardsiella tardais a Gram-negative bacterial pathogen with a broad host range that includes fish and humans. In this study, we examined the activity and function of the lysozyme inhibitor Ivy (named IvyEt) identified in the pathogenicE. tardastrain TX01. IvyEtpossesses the Ivy signature motif CKPHDC in the form of82CQPHNC87and contains several highly conserved residues, including a tryptophan (W55). For the purpose of virulence analysis, an isogenic TX01 mutant, TXivy, was created. TXivy bears an in-frame deletion of theivyEtgene. A live infection study in a turbot (Scophthalmus maximus) model showed that, compared to TX01, TXivy exhibited attenuated overall virulence, reduced tissue dissemination and colonization capacity, an impaired ability to replicate in host macrophages, and decreased resistance against the bactericidal effect of host serum. To facilitate functional analysis, recombinant IvyEt(rIvy) and three mutant proteins, i.e., rIvyW55A, rIvyC82S, and rIvyH85D, which bear Ala, Ser, and Asp substitutions at W55, C82, and H85, respectively, were prepared.In vitrostudies showed that rIvy, rIvyW55A, and rIvyH85D were able to block the lytic effect of lysozyme on a Gram-positive bacterium, whereas rIvyC82S could not do so. Likewise, rIvy, but not rIvyC82S, inhibited the serum-facilitated killing effect of lysozyme onE. tarda.In vivoanalysis showed that rIvy, but not rIvyC82S, restored the lost pathogenicity of TXivy and enhanced the infectivity of TX01. Together these results indicate that IvyEtis a lysozyme inhibitor and a virulence factor that depends on the conserved C82 for biological activity.


2020 ◽  
Vol 88 (11) ◽  
Author(s):  
Marloes I. Hofstee ◽  
Martijn Riool ◽  
Igors Terjajevs ◽  
Keith Thompson ◽  
Martin J. Stoddart ◽  
...  

ABSTRACT Staphylococcus aureus is a prominent human pathogen in bone and soft-tissue infections. Pathophysiology involves abscess formation, which consists of central staphylococcal abscess communities (SACs), surrounded by a fibrin pseudocapsule and infiltrating immune cells. Protection against the ingress of immune cells such as neutrophils, or tolerance to antibiotics, remains largely unknown for SACs and is limited by the lack of availability of in vitro models. We describe a three-dimensional in vitro model of SACs grown in a human plasma-supplemented collagen gel. The in vitro SACs reached their maximum size by 24 h and elaborated a fibrin pseudocapsule, as confirmed by electron and immunofluorescence microscopy. The in vitro SACs tolerated 100× the MIC of gentamicin alone and in combination with rifampin, while planktonic controls and mechanically dispersed SACs were efficiently killed. To simulate a host response, SACs were exposed to differentiated PLB-985 neutrophil-like (dPLB) cells and to primary human neutrophils at an early stage of SAC formation or after maturation at 24 h. Both cell types were unable to clear mature in vitro SACs, but dPLB cells prevented SAC growth upon early exposure before pseudocapsule maturation. Neutrophil exposure after plasmin pretreatment of the SACs resulted in a significant decrease in the number of bacteria within the SACs. The in vitro SAC model mimics key in vivo features, offers a new tool to study host-pathogen interactions and drug efficacy assessment, and has revealed the functionality of the S. aureus pseudocapsule in protecting the bacteria from host phagocytic responses and antibiotics.


2014 ◽  
Vol 82 (9) ◽  
pp. 3644-3656 ◽  
Author(s):  
Michael D. Engstrom ◽  
Christopher J. Alteri ◽  
Harry L. T. Mobley

ABSTRACTA heterogeneous subset of extraintestinal pathogenicEscherichia coli(ExPEC) strains, referred to as uropathogenicE. coli(UPEC), causes most uncomplicated urinary tract infections. However, no core set of virulence factors exists among UPEC strains. Instead, the focus of the analysis of urovirulence has shifted to studying broad classes of virulence factors and the interactions between them. For example, the RTX nonfimbrial adhesin TosA mediates adherence to host cells derived from the upper urinary tract. The associatedtosoperon is well expressedin vivobut poorly expressedin vitroand encodes TosCBD, a predicted type 1 secretion system. TosR and TosEF are PapB and LuxR family transcription factors, respectively; however, no role has been assigned to these potential regulators. Thus, the focus of this study was to determine how TosR and TosEF regulatetosAand affect the reciprocal expression of adhesins and flagella. Among a collection of sequenced UPEC strains, 32% (101/317) were found to encode TosA, and nearly all strains (91% [92/101]) simultaneously carried the putative regulatory genes. Deletion oftosRalleviatestosArepression. Thetospromoter was localized upstream oftosRusing transcriptional fusions of putative promoter regions withlacZ. TosR binds to this region, affecting a gel shift. A 100-bp fragment 220 to 319 bp upstream oftosRinhibits binding, suggesting localization of the TosR binding site. TosEF, on the other hand, downmodulate motility when overexpressed by preventing the expression offliC, encoding flagellin. Deletion oftosEFincreased motility. Thus, we present an additional example of the reciprocal control of adherence and motility.


2014 ◽  
Vol 21 (11) ◽  
pp. 1550-1559 ◽  
Author(s):  
Benjamin J. Koestler ◽  
Sergey S. Seregin ◽  
David P. W. Rastall ◽  
Yasser A. Aldhamen ◽  
Sarah Godbehere ◽  
...  

ABSTRACTThe bacterial second messenger cyclic di-GMP (c-di-GMP) stimulates inflammation by initiating innate immune cell recruitment and triggering the release of proinflammatory cytokines and chemokines. These properties make c-di-GMP a promising candidate for use as a vaccine adjuvant, and numerous studies have demonstrated that administration of purified c-di-GMP with different antigens increases protection against infection in animal models. Here, we have developed a novel approach to produce c-di-GMP inside host cells as an adjuvant to exploit a host-pathogen interaction and initiate an innate immune response. We have demonstrated that c-di-GMP can be synthesizedin vivoby transducing a diguanylate cyclase (DGC) gene into mammalian cells using an adenovirus serotype 5 (Ad5) vector. Expression of DGC led to the production of c-di-GMPin vitroandin vivo, and this was able to alter proinflammatory gene expression in murine tissues and increase the secretion of numerous cytokines and chemokines when administered to animals. Furthermore, coexpression of DGC modestly increased T-cell responses to aClostridium difficileantigen expressed from an adenovirus vaccine, although no significant differences in antibody titers were observed. This adenovirus c-di-GMP delivery system offers a novel method to administer c-di-GMP as an adjuvant to stimulate innate immunity during vaccination.


2011 ◽  
Vol 193 (22) ◽  
pp. 6358-6365 ◽  
Author(s):  
Marcin Wolański ◽  
Rafał Donczew ◽  
Agnieszka Kois-Ostrowska ◽  
Paweł Masiewicz ◽  
Dagmara Jakimowicz ◽  
...  

AdpA is a key regulator of morphological differentiation inStreptomyces. In contrast toStreptomyces griseus, relatively little is known about AdpA protein functions inStreptomyces coelicolor. Here, we report for the first time the translation accumulation profile of theS. coelicoloradpA(adpASc) gene; the level ofS. coelicolorAdpA (AdpASc) increased, reaching a maximum in the early stage of aerial mycelium formation (after 36 h), and remained relatively stable for the next several hours (48 to 60 h), and then the signal intensity decreased considerably. AdpAScspecifically binds theadpAScpromoter regionin vitroandin vivo, suggesting that its expression is autoregulated; surprisingly, in contrast toS. griseus, the protein presumably acts as a transcriptional activator. We also demonstrate a direct influence of AdpAScon the expression of several genes whose products play key roles in the differentiation ofS. coelicolor: STI, a protease inhibitor; RamR, an atypical response regulator that itself activates expression of the genes for a small modified peptide that is required for aerial growth; and ClpP1, an ATP-dependent protease. The diverse influence of AdpAScprotein on the expression of the analyzed genes presumably results mainly from different affinities of AdpAScprotein to individual promoters.


Sign in / Sign up

Export Citation Format

Share Document