scholarly journals Fitness Cost of Rifampin Resistance in Neisseria meningitidis:In VitroStudy of Mechanisms Associated withrpoBH553Y Mutation

2015 ◽  
Vol 59 (12) ◽  
pp. 7637-7649 ◽  
Author(s):  
Roberta Colicchio ◽  
Chiara Pagliuca ◽  
Gabiria Pastore ◽  
Annunziata Gaetana Cicatiello ◽  
Caterina Pagliarulo ◽  
...  

ABSTRACTRifampin chemoprophylaxis againstNeisseria meningitidisinfections led to the onset of rifampin resistance in clinical isolates harboring point mutations in therpoBgene, coding for the RNA polymerase β chain. These resistant strains are rare in medical practice, suggesting their decreased fitness in the human host. In this study, we isolated rifampin-resistantrpoBmutants from hypervirulent serogroup C strain 93/4286 and analyzed their different properties, including the ability to grow/survive in different culture media and in differentiated THP-1 human monocytes and to compete with the wild-type strainin vitro. Our results demonstrate that differentrpoBmutations (H553Y, H553R, and S549F) may have different effects, ranging from low- to high-cost effects, on bacterial fitnessin vitro. Moreover, we found that the S549F mutation confers temperature sensitivity, possibly explaining why it is observed very rarely in clinical isolates. Comparative high-throughput RNA sequencing analysis of bacteria grown in chemically defined medium demonstrated that the low-cost H553Y substitution resulted in global transcriptional changes that functionally mimic the stringent response. Interestingly, many virulence-associated genes, including those coding for meningococcal type IV pili, porin A, adhesins/invasins, IgA protease, two-partner secretion system HrpA/HrpB, enzymes involved in resistance to oxidative injury, lipooligosaccharide sialylation, and capsular polysaccharide biosynthesis, were downregulated in the H553Y mutant compared to their level of expression in the wild-type strain. These data might account for the reduced capacity of this mutant to grow/survive in differentiated THP-1 cells and explain the rarity of H553Y mutants among clinical isolates.

2002 ◽  
Vol 70 (10) ◽  
pp. 5454-5461 ◽  
Author(s):  
Philippe Giammarinaro ◽  
James C. Paton

ABSTRACT As part of a study of virulence gene regulation in Streptococcus pneumoniae, we have identified a gene encoding a homologue of the staphylococcal catabolite control protein CcpA in the pneumococcal genome sequence. The pneumococcal protein, designated RegM, has significant similarity to members of the LacI/GalR family of bacterial regulatory proteins. S. pneumoniae D39 derivatives with insertion-duplication or deletion mutations in regM were significantly attenuated in virulence with respect to the wild-type strain. In defined media containing either sucrose or lactose as sole carbon sources, the in vitro growth rates of D39 and the regM mutants were essentially the same. However, in the presence of galactose the regM mutants grew significantly faster than the wild-type strain, whereas growth rates were significantly lower in the presence of glucose or maltose. These data are consistent with the involvement of regM in the catabolism of carbohydrates in S. pneumoniae. RegM was a repressor of both α-glucosidase and β-galactosidase activities in S. pneumoniae, but unlike the situation in certain other bacteria, it does not mediate the repression of these enzymes by glucose. The observed attenuation in virulence was not attributable to poorer growth of the regM mutants in mouse blood ex vivo, but nevertheless, the mutants were rapidly cleared from the blood of infected mice in vivo. The regM mutation had no apparent impact on expression of several confirmed pneumococcal virulence proteins, but studies employing a lacZ transcriptional fusion construct indicated that mutation of regM resulted in a significant reduction in transcription of the capsular polysaccharide biosynthesis locus (cps). Thus, regM is the first gene outside of the cps locus to be implicated in regulation of capsular gene expression.


2004 ◽  
Vol 48 (7) ◽  
pp. 2747-2750 ◽  
Author(s):  
E. Mellado ◽  
G. Garcia-Effron ◽  
L. Alcazar-Fuoli ◽  
M. Cuenca-Estrella ◽  
J. L. Rodriguez-Tudela

ABSTRACT Five clinical isolates of Aspergillus fumigatus that exhibited similar patterns of reduced susceptibility to itraconazole and other triazole drugs were analyzed. Sequence analysis of genes (cyp51A and cyp51B) encoding the 14α-sterol demethylases revealed that all five strains harbored mutations in cyp51A resulting in the replacement of methionine at residue 220 by valine, lysine, or threonine. When the mutated cyp51A genes were introduced into an A. fumigatus wild-type strain, the transformants exhibited reduced susceptibility to all triazole agents, confirming that the mutations were responsible for the resistance phenotype.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ruiqi Wang ◽  
Kun Li ◽  
Jifang Yu ◽  
Jiaoyu Deng ◽  
Yaokai Chen

AbstractPrevious studies showed that mutation of folC caused decreased expression of the dihydropteroate synthase encoding gene folP2 in Mycobacterium tuberculosis (M. tuberculosis). We speculated that mutation of folC in M. tuberculosis might affect the susceptibility to sulfamethoxazole (SMX). To prove this, 53 clinical isolates with folC mutations were selected and two folC mutants (I43A, I43T) were constructed based on M. tuberculosis H37Ra. The results showed that 42 of the 53 clinical isolates (79.2%) and the two lab-constructed folC mutants were more sensitive to SMX. To probe the mechanism by which folC mutations make M. tuberculosis more sensitive to SMX, folP2 was deleted in H37Ra, and expression levels of folP2 were compared between H37Ra and the two folC mutants. Although deletion of folP2 resulted in increased susceptibility to SMX, no difference in folP2 expression was observed. Furthermore, production levels of para-aminobenzoic acid (pABA) were compared between the folC mutants and the wild-type strain, and results showed that folC mutation resulted in decreased production of pABA. Taken together, we show that folC mutation leads to decreased production of pABA in M. tuberculosis and thus affects its susceptibility to SMX, which broadens our understanding of mechanisms of susceptibilities to antifolates in this bacterium.


2000 ◽  
Vol 68 (10) ◽  
pp. 5575-5580 ◽  
Author(s):  
Ping Chen ◽  
Rafael E. Ruiz ◽  
Qing Li ◽  
Richard F. Silver ◽  
William R. Bishai

ABSTRACT The alternate RNA polymerase sigma factor gene, sigF, which is expressed in stationary phase and under stress conditions in vitro, has been deleted in the virulent CDC1551 strain ofMycobacterium tuberculosis. The growth rate of the ΔsigF mutant was identical to that of the isogenic wild-type strain in exponential phase, although in stationary phase the mutant achieved a higher density than the wild type. The mutant showed increased susceptibility to rifampin and rifapentine. Additionally, the ΔsigF mutant displayed diminished uptake of chenodeoxycholate, and this effect was reversed by complementation with a wild-type sigF gene. No differences in short-term intracellular growth between mutant and wild-type organisms within human monocytes were observed. Similarly, the organisms did not differ in their susceptibilities to lymphocyte-mediated inhibition of intracellular growth. However, mice infected with the ΔsigF mutant showed a median time to death of 246 days compared with 161 days for wild-type strain-infected animals (P < 0.001). These data indicate that M. tuberculosis sigF is a nonessential alternate sigma factor both in axenic culture and for survival in macrophages in vitro. While the ΔsigF mutant produces a lethal infection of mice, it is less virulent than its wild-type counterpart by time-to-death analysis.


2006 ◽  
Vol 50 (2) ◽  
pp. 445-452 ◽  
Author(s):  
Daniel Criswell ◽  
Virginia L. Tobiason ◽  
J. Stephen Lodmell ◽  
D. Scott Samuels

ABSTRACT We have isolated and characterized in vitro mutants of the Lyme disease agent Borrelia burgdorferi that are resistant to spectinomycin, kanamycin, gentamicin, or streptomycin, antibiotics that target the small subunit of the ribosome. 16S rRNA mutations A1185G and C1186U, homologous to Escherichia coli nucleotides A1191 and C1192, conferred >2,200-fold and 1,300-fold resistance to spectinomycin, respectively. A 16S rRNA A1402G mutation, homologous to E. coli A1408, conferred >90-fold resistance to kanamycin and >240-fold resistance to gentamicin. Two mutations were identified in the gene for ribosomal protein S12, at a site homologous to E. coli residue Lys-87, in mutants selected in streptomycin. Substitutions at codon 88, K88R and K88E, conferred 7-fold resistance and 10-fold resistance, respectively, to streptomycin on B. burgdorferi. The 16S rRNA A1185G and C1186U mutations, associated with spectinomycin resistance, appeared in a population of B. burgdorferi parental strain B31 at a high frequency of 6 × 10−6. These spectinomycin-resistant mutants successfully competed with the wild-type strain during 100 generations of coculture in vitro. The aminoglycoside-resistant mutants appeared at a frequency of 3 × 10−9 to 1 ×10−7 in a population and were unable to compete with wild-type strain B31 after 100 generations. This is the first description of mutations in the B. burgdorferi ribosome that confer resistance to antibiotics. These results have implications for the evolution of antibiotic resistance, because the 16S rRNA mutations conferring spectinomycin resistance have no significant fitness cost in vitro, and for the development of new selectable markers.


2013 ◽  
Vol 58 (3) ◽  
pp. 1671-1677 ◽  
Author(s):  
Dora E. Wiskirchen ◽  
Patrice Nordmann ◽  
Jared L. Crandon ◽  
David P. Nicolau

ABSTRACTDoripenem and ertapenem have demonstrated efficacy against several NDM-1-producing isolatesin vivo, despite having high MICs. In this study, we sought to further characterize the efficacy profiles of humanized regimens of standard (500 mg given every 8 h) and high-dose, prolonged infusion of doripenem (2 g given every 8 h, 4-h infusion) and 1 g of ertapenem given intravenously every 24 h and the comparator regimens of ceftazidime at 2 g given every 8 h (2-h infusion), levofloxacin at 500 mg every 24 h, and aztreonam at 2 g every 6 h (1-h infusion) against a wider range of isolates in a murine thigh infection model. An isogenic wild-type strain and NDM-1-producingKlebsiella pneumoniaeand eight clinical NDM-1-producing members of the familyEnterobacteriaceaewere tested in immunocompetent- and neutropenic-mouse models. The wild-type strain was susceptible to all of the agents, while the isogenic NDM-1-producing strain was resistant to ceftazidime, doripenem, and ertapenem. Clinical NDM-1-producing strains were resistant to nearly all five of the agents (two were susceptible to levofloxacin). In immunocompetent mice, all of the agents produced ≥1-log10CFU reductions of the isogenic wild-type and NDM-1-producing strains after 24 h. Minimal efficacy of ceftazidime, aztreonam, and levofloxacin against the clinical NDM-1-producing strains was observed. However, despitein vitroresistance, ≥1-log10CFU reductions of six of eight clinical strains were achieved with high-dose, prolonged infusion of doripenem and ertapenem. Slight enhancements of doripenem activity over the standard doses were obtained with high-dose, prolonged infusion for three of the four isolates tested. Similar efficacy observations were noted in neutropenic mice. These data suggest that carbapenems are a viable treatment option for infections caused by NDM-1-producingEnterobacteriaceae.


2002 ◽  
Vol 70 (3) ◽  
pp. 1075-1080 ◽  
Author(s):  
Guadalupe Cortés ◽  
Dolores Álvarez ◽  
Carles Saus ◽  
Sebastián Albertí

ABSTRACT The airway epithelium represents a primary site for the entry of pathogenic bacteria into the lungs. It has been suggested for many respiratory pathogens, including Klebsiella pneumoniae, that adhesion and invasion of the lung epithelial cells is an early stage of the pneumonia process. We observed that poorly encapsulated K. pneumoniae clinical isolates and an isogenic unencapsulated mutant invaded lung epithelial cells more efficiently than highly encapsulated strains independent of the K type. By contrast, the unencapsulated mutant was completely avirulent in a mouse model of pneumonia, unlike the wild-type strain, which produced pneumonia and systemic infection. Furthermore, the unencapsulated mutant bound more epithelially produced complement component C3 than the wild-type strain. Our results show that lung epithelial cells play a key role as a host defense mechanism against K. pneumoniae pneumonia, using two different strategies: (i) ingestion and control of the microorganisms and (ii) opsonization of the microorganisms. Capsular polysaccharide avoids both mechanisms and enhances the virulence of K. pneumoniae.


2006 ◽  
Vol 75 (1) ◽  
pp. 299-305 ◽  
Author(s):  
M. Victoria Delpino ◽  
María I. Marchesini ◽  
Silvia M. Estein ◽  
Diego J. Comerci ◽  
Juliana Cassataro ◽  
...  

ABSTRACT Choloylglycine hydrolase (CGH), a bile salt hydrolase, has been annotated in all the available genomes of Brucella species. We obtained the Brucella CGH in recombinant form and demonstrated in vitro its capacity to cleave glycocholate into glycine and cholate. Brucella abortus 2308 (wild type) and its isogenic Δcgh deletion mutant exhibited similar growth rates in tryptic soy broth in the absence of bile. In contrast, the growth of the Δcgh mutant was notably impaired by both 5% and 10% bile. The bile resistance of the complemented mutant was similar to that of the wild-type strain. In mice infected through the intragastric or the intraperitoneal route, splenic infection was significantly lower at 10 and 20 days postinfection in animals infected with the Δcgh mutant than in those infected with the wild-type strain. For both routes, no differences in spleen CFU were found between animals infected with the wild-type strain and those infected with the complemented mutant. Mice immunized intragastrically with recombinant CGH mixed with cholera toxin (CGH+CT) developed a specific mucosal humoral (immunoglobulin G [IgG] and IgA) and cellular (interleukin-2) immune responses. Fifteen days after challenge by the same route with live B. abortus 2308 cells, splenic CFU counts were 10-fold lower in mice immunized with CGH+CT than in mice immunized with CT or phosphate-buffered saline. This study shows that CGH confers on Brucella the ability to resist the antimicrobial action of bile salts. The results also suggest that CGH may contribute to the ability of Brucella to infect the host through the oral route.


2006 ◽  
Vol 74 (2) ◽  
pp. 1360-1367 ◽  
Author(s):  
Laura Plant ◽  
Johanna Sundqvist ◽  
Susu Zughaier ◽  
Lena Lövkvist ◽  
David S. Stephens ◽  
...  

ABSTRACT Lipooligosaccharide (LOS) of Neisseria meningitidis has been implicated in meningococcal interaction with host epithelial cells and is a major factor contributing to the human proinflammatory response to meningococci. LOS mutants of the encapsulated N. meningitidis serogroup B strain NMB were used to further determine the importance of the LOS structure in in vitro adherence and invasion of human pharyngeal epithelial cells by meningococci and to study pathogenicity in a mouse (CD46 transgenic) model of meningococcal disease. The wild-type strain [NeuNAc-Galβ-GlcNAc-Galβ-Glcβ-Hep2 (GlcNAc, Glcα) 3-deoxy-d-manno-2-octulosonic acid (KDO2)-lipid A; 1,4′ bisphosphorylated], although poorly adherent, rapidly invaded an epithelial cell layer in vitro, survived and multiplied early in blood, reached the cerebrospinal fluid, and caused lethal disease in the mouse model. In contrast, the Hep2 (GlcNAc) KDO2-lipid A (pgm) mutant, which was highly adherent to cultured epithelial cells, caused significantly less bacteremia and mortality in the mouse model. The Hep2-KDO2-lipid A (rfaK) mutant was shown to be moderately adherent and to cause levels of bacteremia and mortality similar to those caused by the wild-type strain in the mouse model. The KDO2-lipid A (gmhB) mutant, which lacks the heptose disaccharide in the inner core of LOS, avidly attached to epithelial cells but was otherwise avirulent. Disease development correlated with expression of specific LOS structures and was associated with lower adherence but rapid meningococcal passage to and survival in the bloodstream, induction of proinflammatory cytokines, and the crossing of the blood-brain barrier. Taken together, the results of this study further define the importance of the LOS structure as a virulence component involved in multiple steps in the pathogenesis of N. meningitidis.


2008 ◽  
Vol 76 (12) ◽  
pp. 5438-5446 ◽  
Author(s):  
Robert J. Suchland ◽  
Brendan M. Jeffrey ◽  
Minsheng Xia ◽  
Ajay Bhatia ◽  
Hencelyn G. Chu ◽  
...  

ABSTRACT Clinical isolates of Chlamydia trachomatis that lack IncA on their inclusion membrane form nonfusogenic inclusions and have been associated with milder, subclinical infections in patients. The molecular events associated with the generation of IncA-negative strains and their roles in chlamydial sexually transmitted infections are not clear. We explored the biology of the IncA-negative strains by analyzing their genomic structure, transcription, and growth characteristics in vitro and in vivo in comparison with IncA-positive C. trachomatis strains. Three clinical samples were identified that contained a mixture of IncA-positive and -negative same-serovar C. trachomatis populations, and two more such pairs were found in serial isolates from persistently infected individuals. Genomic sequence analysis of individual strains from each of two serovar-matched pairs showed that these pairs were very similar genetically. In contrast, the genome sequence of an unmatched IncA-negative strain contained over 5,000 nucleotide polymorphisms relative to the genome sequence of a serovar-matched but otherwise unlinked strain. Transcriptional analysis, in vitro culture kinetics, and animal modeling demonstrated that IncA-negative strains isolated in the presence of a serovar-matched wild-type strain are phenotypically more similar to the wild-type strain than are IncA-negative strains isolated in the absence of a serovar-matched wild-type strain. These studies support a model suggesting that a change from an IncA-positive strain to the previously described IncA-negative phenotype may involve multiple steps, the first of which involves a translational inactivation of incA, associated with subsequent unidentified steps that lead to the observed decrease in transcript level, differences in growth rate, and differences in mouse infectivity.


Sign in / Sign up

Export Citation Format

Share Document