scholarly journals Metformin Suppresses Development of the Echinococcus multilocularis Larval Stage by Targeting the TOR Pathway

2020 ◽  
Vol 64 (9) ◽  
Author(s):  
Julia A. Loos ◽  
Valeria A. Dávila ◽  
Klaus Brehm ◽  
Andrea C. Cumino

ABSTRACT Alveolar echinococcosis (AE) is a severe disease caused by the larval stage of the tapeworm Echinococcus multilocularis. Current chemotherapeutic treatment options based on benzimidazoles are of limited effectiveness, which underlines the need to find new antiechinococcosis drugs. Metformin is an antihyperglycemic and antiproliferative agent that shows activity against the related parasite Echinococcus granulosus. Hence, we assessed the in vitro and in vivo effects of the drug on E. multilocularis. Metformin exerted significant dose-dependent killing effects on in vitro cultured parasite stem cells and protoscoleces and significantly reduced the dedifferentiation of protoscoleces into metacestodes. Likewise, oral administration of metformin (50 mg/kg of body weight/day for 8 weeks) was effective in achieving a significant reduction of parasite weight in a secondary murine AE model. Our results revealed mitochondrial membrane depolarization, activation of Em-AMPK, suppression of Em-TOR, and overexpression of Em-Atg8 in the germinal layer of metformin-treated metacestode vesicles. The opposite effects on the level of active Em-TOR in response to exogenous insulin and rapamycin suggest that Em-TOR is part of the parasite’s insulin signaling pathway. Finally, the presence of the key lysosomal pathway components, through which metformin reportedly acts, was confirmed in the parasite by in silico assays. Taken together, these results introduce metformin as a promising candidate for AE treatment. Although our study highlights the importance of those direct mechanisms by which metformin reduces parasite viability, it does not necessarily preclude any additional systemic effects of the drug that might reduce parasite growth in vivo.

2013 ◽  
Vol 57 (8) ◽  
pp. 3829-3835 ◽  
Author(s):  
Tatiana Küster ◽  
Nadja Kriegel ◽  
David W. Boykin ◽  
Chad E. Stephens ◽  
Andrew Hemphill

ABSTRACTAlveolar echinococcosis (AE) is a disease predominantly affecting the liver, with metacestodes (larvae) of the tapewormEchinococcus multilocularisproliferating and exhibiting tumor-like infiltrative growth. For many years, chemotherapeutical treatment against alveolar echinococcosis has relied on the benzimidazoles albendazole and mebendazole, which require long treatment durations and exhibit parasitostatic rather than parasiticidal efficacy. Although benzimidazoles have been and still are beneficial for the patients, there is clearly a demand for alternative and more efficient treatment options. Aromatic dications, more precisely a small panel of di-N-aryl-diguanidino compounds, were screened for efficacy againstE. multilocularismetacestodesin vitro. Only those with a thiophene core group were active against metacestodes, while furans were not. The most active compound, DB1127, was further investigated in terms ofin vivoefficacy in mice experimentally infected withE. multilocularismetacestodes. This diguanidino compound was effective against AE when administered intraperitoneally but not when applied orally. Thus, thiophene-diguanidino derivatives with improved bioavailability when administered orally could lead to treatment options against AE.


2020 ◽  
Vol 64 (6) ◽  
Author(s):  
Ørjan Samuelsen ◽  
Ove Alexander Høgmoen Åstrand ◽  
Christopher Fröhlich ◽  
Adam Heikal ◽  
Susann Skagseth ◽  
...  

ABSTRACT Carbapenem-resistant Gram-negative pathogens are a critical public health threat and there is an urgent need for new treatments. Carbapenemases (β-lactamases able to inactivate carbapenems) have been identified in both serine β-lactamase (SBL) and metallo-β-lactamase (MBL) families. The recent introduction of SBL carbapenemase inhibitors has provided alternative therapeutic options. Unfortunately, there are no approved inhibitors of MBL-mediated carbapenem-resistance and treatment options for infections caused by MBL-producing Gram-negatives are limited. Here, we present ZN148, a zinc-chelating MBL-inhibitor capable of restoring the bactericidal effect of meropenem and in vitro clinical susceptibility to carbapenems in >98% of a large international collection of MBL-producing clinical Enterobacterales strains (n = 234). Moreover, ZN148 was able to potentiate the effect of meropenem against NDM-1-producing Klebsiella pneumoniae in a murine neutropenic peritonitis model. ZN148 showed no inhibition of the human zinc-containing enzyme glyoxylase II at 500 μM, and no acute toxicity was observed in an in vivo mouse model with cumulative dosages up to 128 mg/kg. Biochemical analysis showed a time-dependent inhibition of MBLs by ZN148 and removal of zinc ions from the active site. Addition of exogenous zinc after ZN148 exposure only restored MBL activity by ∼30%, suggesting an irreversible mechanism of inhibition. Mass-spectrometry and molecular modeling indicated potential oxidation of the active site Cys221 residue. Overall, these results demonstrate the therapeutic potential of a ZN148-carbapenem combination against MBL-producing Gram-negative pathogens and that ZN148 is a highly promising MBL inhibitor that is capable of operating in a functional space not presently filled by any clinically approved compound.


2017 ◽  
Vol 62 (3) ◽  
Author(s):  
Hassan E. Eldesouky ◽  
Abdelrahman Mayhoub ◽  
Tony R. Hazbun ◽  
Mohamed N. Seleem

ABSTRACTInvasive candidiasis presents an emerging global public health challenge due to the emergence of resistance to the frontline treatment options, such as fluconazole. Hence, the identification of other compounds capable of pairing with fluconazole and averting azole resistance would potentially prolong the clinical utility of this important group. In an effort to repurpose drugs in the field of antifungal drug discovery, we explored sulfa antibacterial drugs for the purpose of reversing azole resistance inCandida. In this study, we assembled and investigated a library of 21 sulfa antibacterial drugs for their ability to restore fluconazole sensitivity inCandida albicans. Surprisingly, the majority of assayed sulfa drugs (15 of 21) were found to exhibit synergistic relationships with fluconazole by checkerboard assay with fractional inhibitory concentration index (ΣFIC) values ranging from <0.0312 to 0.25. Remarkably, five sulfa drugs were able to reverse azole resistance in a clinically achievable range. The structure-activity relationships (SARs) of the amino benzene sulfonamide scaffold as antifungal agents were studied. We also identified the possible mechanism of the synergistic interaction of sulfa antibacterial drugs with azole antifungal drugs. Furthermore, the ability of sulfa antibacterial drugs to inhibitCandidabiofilm by 40%in vitrowas confirmed. In addition, the effects of sulfa-fluconazole combinations onCandidagrowth kinetics and efflux machinery were explored. Finally, using aCaenorhabditis elegansinfection model, we demonstrated that the sulfa-fluconazole combination does possess potent antifungal activityin vivo, reducingCandidain infected worms by ∼50% compared to the control.


2012 ◽  
Vol 56 (9) ◽  
pp. 4786-4792 ◽  
Author(s):  
Michelle M. Butler ◽  
Dean L. Shinabarger ◽  
Diane M. Citron ◽  
Ciarán P. Kelly ◽  
Sofya Dvoskin ◽  
...  

ABSTRACTClostridium difficileinfection (CDI) causes moderate to severe disease, resulting in diarrhea and pseudomembranous colitis. CDI is difficult to treat due to production of inflammation-inducing toxins, resistance development, and high probability of recurrence. Only two antibiotics are approved for the treatment of CDI, and the pipeline for therapeutic agents contains few new drugs. MBX-500 is a hybrid antibacterial, composed of an anilinouracil DNA polymerase inhibitor linked to a fluoroquinolone DNA gyrase/topoisomerase inhibitor, with potential as a new therapeutic for CDI treatment. Since MBX-500 inhibits three bacterial targets, it has been previously shown to be minimally susceptible to resistance development. In the present study, thein vitroandin vivoefficacies of MBX-500 were explored against the Gram-positive anaerobe,C. difficile. MBX-500 displayed potency across nearly 50 isolates, including those of the fluoroquinolone-resistant, toxin-overproducing NAP1/027 ribotype, performing as well as comparator antibiotics vancomycin and metronidazole. Furthermore, MBX-500 was a narrow-spectrum agent, displaying poor activity against many other gut anaerobes. MBX-500 was active in acute and recurrent infections in a toxigenic hamster model of CDI, exhibiting full protection against acute infections and prevention of recurrence in 70% of the animals. Hamsters treated with MBX-500 displayed significantly greater weight gain than did those treated with vancomycin. Finally, MBX-500 was efficacious in a murine model of CDI, again demonstrating a fully protective effect and permitting near-normal weight gain in the treated animals. These selective anti-CDI features support the further development of MBX 500 for the treatment of CDI.


2018 ◽  
Vol 62 (8) ◽  
Author(s):  
Karen Joy Shaw ◽  
Wiley A. Schell ◽  
Jonathan Covel ◽  
Gisele Duboc ◽  
C. Giamberardino ◽  
...  

ABSTRACTCryptococcal meningitis (CM), caused primarily byCryptococcus neoformans, is uniformly fatal if not treated. Treatment options are limited, especially in resource-poor geographical regions, and mortality rates remain high despite current therapies. Here we evaluated thein vitroandin vivoactivity of several compounds, including APX001A and its prodrug, APX001, currently in clinical development for the treatment of invasive fungal infections. These compounds target the conserved Gwt1 enzyme that is required for the localization of glycosylphosphatidylinositol (GPI)-anchored cell wall mannoproteins in fungi. The Gwt1 inhibitors had low MIC values, ranging from 0.004 μg/ml to 0.5 μg/ml, against bothC. neoformansandC. gattii. APX001A and APX2020 demonstratedin vitrosynergy with fluconazole (fractional inhibitory concentration index, 0.37 for both). In a CM model, APX001 and fluconazole each alone reduced the fungal burden in brain tissue (0.78 and 1.04 log10CFU/g, respectively), whereas the combination resulted in a reduction of 3.52 log10CFU/g brain tissue. Efficacy, as measured by a reduction in the brain and lung tissue fungal burden, was also observed for another Gwt1 inhibitor prodrug, APX2096, where dose-dependent reductions in the fungal burden ranged from 5.91 to 1.79 log10CFU/g lung tissue and from 7.00 and 0.92 log10CFU/g brain tissue, representing the nearly complete or complete sterilization of lung and brain tissue at the higher doses. These data support the further clinical evaluation of this new class of antifungal agents for the treatment of CM.


2010 ◽  
Vol 55 (2) ◽  
pp. 713-721 ◽  
Author(s):  
Tatiana Küster ◽  
Britta Stadelmann ◽  
Corina Hermann ◽  
Sabrina Scholl ◽  
Jennifer Keiser ◽  
...  

ABSTRACTAlveolar echinococcosis (AE) is caused by the metacestode stage of the fox tapewormEchinococcus multilocularisand causes severe disease in the human liver, and occasionally in other organs, that is fatal when treatment is unsuccessful. The present chemotherapy against AE is based on mebendazole and albendazole. Albendazole treatment has been found to be ineffective in some instances, is parasitostatic rather than parasiticidal, and usually involves the lifelong uptake of large doses of drugs. Thus, new treatment options are urgently needed. In this study we investigated thein vitroandin vivoefficacy of mefloquine againstE. multilocularismetacestodes. Treatment using mefloquine (20 μM) againstin vitrocultures of metacestodes resulted in rapid and complete detachment of large parts of the germinal layer from the inner surface of the laminated layer within a few hours. Thein vitroactivity of mefloquine was dependent on the dosage.In vitroculture of metacestodes in the presence of 24 μM mefloquine for a period of 10 days was parasiticidal, as determined by murine bioassays, while treatment with 12 μM was not. Oral application of mefloquine (25 mg/kg of body weight administered twice a week for a period of 8 weeks) inE. multilocularis-infected mice was ineffective in achieving any reduction of parasite weight, whereas treatment with albendazole (200 mg/kg/day) was highly effective. However, when the same mefloquine dosage was applied intraperitoneally, the reduction in parasite weight was similar to the reduction seen with oral albendazole application. Combined application of both drugs did not increase the treatment efficacy. In conclusion, mefloquine represents an interesting drug candidate for the treatment of AE, and these results should be followed up in appropriatein vivostudies.


2012 ◽  
Vol 56 (9) ◽  
pp. 4662-4670 ◽  
Author(s):  
Alex G. Therien ◽  
Joann L. Huber ◽  
Kenneth E. Wilson ◽  
Patrick Beaulieu ◽  
Alexandre Caron ◽  
...  

ABSTRACTThe resistance of methicillin-resistantStaphylococcus aureus(MRSA) to all β-lactam classes limits treatment options for serious infections involving this organism. Our goal is to discover new agents that restore the activity of β-lactams against MRSA, an approach that has led to the discovery of two classes of natural product antibiotics, a cyclic depsipeptide (krisynomycin) and a lipoglycopeptide (actinocarbasin), which potentiate the activity of imipenem against MRSA strain COL. We report here that these imipenem synergists are inhibitors of the bacterial type I signal peptidase SpsB, a serine protease that is required for the secretion of proteins that are exported through the Sec and Tat systems. A synthetic derivative of actinocarbasin, M131, synergized with imipenem bothin vitroandin vivowith potent efficacy. Thein vitroactivity of M131 extends to clinical isolates of MRSA but not to a methicillin-sensitive strain. Synergy is restricted to β-lactam antibiotics and is not observed with other antibiotic classes. We propose that the SpsB inhibitors synergize with β-lactams by preventing the signal peptidase-mediated secretion of proteins required for β-lactam resistance. Combinations of SpsB inhibitors and β-lactams may expand the utility of these widely prescribed antibiotics to treat MRSA infections, analogous to β-lactamase inhibitors which restored the utility of this antibiotic class for the treatment of resistant Gram-negative infections.


2019 ◽  
Vol 63 (8) ◽  
Author(s):  
Juan M. Pericàs ◽  
Ruvandhi Nathavitharana ◽  
Cristina Garcia-de-la-Mària ◽  
Carles Falces ◽  
Juan Ambrosioni ◽  
...  

ABSTRACT Optimal treatment options remain unknown for infective endocarditis (IE) caused by penicillin-resistant (PEN-R) viridans group streptococcal (VGS) strains. The aims of this study were to report two cases of highly PEN-R VGS IE, perform a literature review, and evaluate various antibiotic combinations in vitro and in vivo. The following combinations were tested by time-kill studies and in the rabbit experimental endocarditis (EE) model: PEN-gentamicin, ceftriaxone-gentamicin, vancomycin-gentamicin, daptomycin-gentamicin, and daptomycin-ampicillin. Case 1 was caused by Streptococcus parasanguinis (PEN MIC, 4 μg/ml) and was treated with vancomycin plus cardiac surgery. Case 2 was caused by Streptococcus mitis (PEN MIC, 8 μg/ml) and was treated with 4 weeks of vancomycin plus gentamicin, followed by 2 weeks of vancomycin alone. Both patients were alive and relapse-free after ≥6 months follow-up. For the in vitro studies, except for daptomycin-ampicillin, all combinations demonstrated both synergy and bactericidal activity against the S. parasanguinis isolate. Only PEN-gentamicin, daptomycin-gentamicin, and daptomycin-ampicillin demonstrated both synergy and bactericidal activity against the S. mitis strain. Both strains developed high-level daptomycin resistance (HLDR) during daptomycin in vitro passage. In the EE studies, PEN alone failed to clear S. mitis from vegetations, while ceftriaxone and vancomycin were significantly more effective (P < 0.001). The combination of gentamicin with PEN or vancomycin increased bacterial eradication compared to that with the respective monotherapies. In summary, two patients with highly PEN-R VGS IE were cured using vancomycin-based therapy. In vivo, regimens of gentamicin plus either β-lactams or vancomycin were more active than their respective monotherapies. Further clinical studies are needed to confirm the role of vancomycin-based regimens for highly PEN-R VGS IE. The emergence of HLDR among these strains warrants caution in the use of daptomycin therapy for VGS IE.


2015 ◽  
Vol 60 (2) ◽  
pp. 1114-1120 ◽  
Author(s):  
Chunna Guo ◽  
Xiaoping Liao ◽  
Mingru Wang ◽  
Feng Wang ◽  
Chaoqun Yan ◽  
...  

ABSTRACTStreptococcus suisserotype 2 is an emerging zoonotic pathogen and causes severe disease in both pigs and human beings. Cefquinome (CEQ), a fourth-generation cephalosporin, exhibits broad-spectrum activity against Gram-positive bacteria such asS. suis. This study evaluated thein vitroandin vivoantimicrobial activities of CEQ against four strains ofS. suisserotype 2 in a murine neutropenic thigh infection model. We investigated the effect of varied inoculum sizes (106to 108CFU/thigh) on the pharmacokinetic (PK)/pharmacodynamic (PD) indices and magnitudes of a particular PK/PD index or dose required for efficacy. Dose fractionation studies included total CEQ doses ranging from 0.625 to 640 mg/kg/24 h. Data were analyzed via a maximum effect (Emax) model using nonlinear regression. The PK/PD studies demonstrated that the percentage of time that serum drug levels were above the MIC of free drug (%ƒT>MIC) in a 24-h dosing interval was the primary index driving the efficacy of both inoculum sizes (R2= 91% andR2= 63%). CEQ doses of 2.5 and 40 mg/kg body weight produced prolonged postantibiotic effects (PAEs) of 2.45 to 8.55 h. Inoculum sizes had a significant influence on CEQ efficacy. Compared to the CEQ exposure and dosages in tests using standard inocula, a 4-fold dose (P= 0.006) and a 2-fold exposure time (P= 0.01) were required for a 1-log kill using large inocula of 108CFU/thigh.


2015 ◽  
Vol 59 (11) ◽  
pp. 6946-6951 ◽  
Author(s):  
Bo Wang ◽  
Yufeng Jiang ◽  
Zhuo Wang ◽  
Fangfang Li ◽  
Guoqiang Xing ◽  
...  

ABSTRACTSpillage of cyst contents during surgery is the major cause of recurrences of hydatidosis, also called cystic echinococcosis (CE). Currently, many scolicidal agents are used for inactivation of the cyst contents. However, due to complications in the use of those agents, new and more-effective treatment options are urgently needed. The aim of this study was to investigate thein vitroefficacy of arsenic trioxide (ATO) againstEchinococcus granulosusprotoscolices. Protoscolices ofE. granulosuswere incubatedin vitrowith 2, 4, 6, and 8 μmol/liter ATO; viability of protoscolices was assessed daily by microscopic observation of movements and 0.1% eosin staining. A small sample from each culture was processed for scanning and transmission electron microscopy. ATO demonstrated a potent ability to kill protoscolices, suggesting that ATO may represent a new strategy in treating hydatid cyst echinococcosis. However, thein vivoefficacy and possible side effects of ATO need to be explored.


Sign in / Sign up

Export Citation Format

Share Document