scholarly journals Physicochemical and Structural Parameters Contributing to the Antibacterial Activity and Efflux Susceptibility of Small Molecule Inhibitors of Escherichia coli

Author(s):  
Sara S. El Zahed ◽  
Shawn French ◽  
Maya A. Farha ◽  
Garima Kumar ◽  
Eric D. Brown

Discovering new Gram-negative antibiotics has been a challenge for decades. This has been largely attributed to a limited understanding of the molecular descriptors governing Gram-negative permeation and efflux evasion. Herein, we address the contribution of efflux using a novel approach that applies multivariate analysis, machine learning, and structure-based clustering to some 4,500 actives from a small molecule screen in efflux-compromised Escherichia coli. We employed principal-component analysis and trained two decision tree-based machine learning models to investigate descriptors contributing to the antibacterial activity and efflux susceptibility of these actives. This approach revealed that the Gram-negative activity of hydrophobic and planar small molecules with low molecular stability is limited to efflux-compromised E. coli. Further, molecules with reduced branching and compactness showed increased susceptibility to efflux. Given these distinct properties that govern efflux, we developed the first machine learning model, called Susceptibility to Efflux Random Forest (SERF), as a tool to analyze the molecular descriptors of small molecules and predict those that could be susceptible to efflux pumps in silico. Here, SERF demonstrated high accuracy in identifying such molecules. Further, we clustered all 4,500 actives based on their core structures and identified distinct clusters highlighting side chain moieties that cause marked changes in efflux susceptibility. In all, our work reveals a role for physicochemical and structural parameters in governing efflux, presents a machine learning tool for rapid in silico analysis of efflux susceptibility, and provides a proof of principle for the potential of exploiting side chain modification to design novel antimicrobials evading efflux pumps.

2020 ◽  
Vol 15 (6) ◽  
pp. 665-679
Author(s):  
Alok K. Srivastava ◽  
Lokesh K. Pandey

Background: [1, 3, 4]oxadiazolenone core containing chalcones and nucleosides were synthesized by Claisen-Schmidt condensation of a variety of benzaldehyde derivatives, obtained from oxidation of substituted 5-(3/6 substituted-4-Methylphenyl)-1, 3, 4-oxadiazole-2(3H)-one and various substituted acetophenone. The resultant chalcones were coupled with penta-O-acetylglucopyranose followed by deacetylation to get [1, 3, 4] oxadiazolenone core containing chalcones and nucleosides. Various analytical techniques viz IR, NMR, LC-MS and elemental analysis were used to confirm the structure of the synthesised compounds.The compounds were targeted against Bacillus subtilis, Staphylococcus aureus and Escherichia coli for antibacterial activity and Aspergillus flavus, Aspergillus niger and Fusarium oxysporum for antifungal activity. Methods: A mixture of Acid hydrazides (3.0 mmol) and N, Nʹ- carbonyl diimidazole (3.3 mmol) in 15 mL of dioxane was refluxed to afford substituted [1, 3, 4]-oxadiazole-2(3H)-one. The resulted [1, 3, 4]- oxadiazole-2(3H)-one (1.42 mmol) was oxidized with Chromyl chloride (1.5 mL) in 20 mL of carbon tetra chloride and condensed with acetophenones (1.42 mmol) to get chalcones 4. The equimolar ratio of obtained chalcones 4 and β -D-1,2,3,4,6- penta-O-acetylglucopyranose in presence of iodine was refluxed to get nucleosides 5. The [1, 3, 4] oxadiazolenone core containing chalcones 4 and nucleosides 5 were tested to determined minimum inhibitory concentration (MIC) value with the experimental procedure of Benson using disc-diffusion method. All compounds were tested at concentration of 5 mg/mL, 2.5 mg/mL, 1.25 mg/mL, 0.62 mg/mL, 0.31 mg/mL and 0.15 mg/mL for antifungal activity against three strains of pathogenic fungi Aspergillus flavus (A. flavus), Aspergillus niger (A. niger) and Fusarium oxysporum (F. oxysporum) and for antibacterial activity against Gram-negative bacterium: Escherichia coli (E. coli), and two Gram-positive bacteria: Staphylococcus aureus (S. aureus) and Bacillus subtilis(B. subtilis). Result: The chalcones 4 and nucleosides 5 were screened for antibacterial activity against E. coli, S. aureus and B. subtilis whereas antifungal activity against A. flavus, A. niger and F. oxysporum. Compounds 4a-t showed good antibacterial activity whereas compounds 5a-t containing glucose moiety showed better activity against fungi. The glucose moiety of compounds 5 helps to enter into the cell wall of fungi and control the cell growth. Conclusion: Chalcones 4 and nucleosides 5 incorporating [1, 3, 4] oxadiazolenone core were synthesized and characterized by various spectral techniques and elemental analysis. These compounds were evaluated for their antifungal activity against three fungi; viz. A. flavus, A. niger and F. oxysporum. In addition to this, synthesized compounds were evaluated for their antibacterial activity against gram negative bacteria E. Coli and gram positive bacteria S. aureus, B. subtilis. Compounds 4a-t showed good antibacterial activity whereas 5a-t showed better activity against fungi.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Tessa B. Moyer ◽  
Ashleigh L. Purvis ◽  
Andrew J. Wommack ◽  
Leslie M. Hicks

Abstract Background Plant defensins are a broadly distributed family of antimicrobial peptides which have been primarily studied for agriculturally relevant antifungal activity. Recent studies have probed defensins against Gram-negative bacteria revealing evidence for multiple mechanisms of action including membrane lysis and ribosomal inhibition. Herein, a truncated synthetic analog containing the γ-core motif of Amaranthus tricolor DEF2 (Atr-DEF2) reveals Gram-negative antibacterial activity and its mechanism of action is probed via proteomics, outer membrane permeability studies, and iron reduction/chelation assays. Results Atr-DEF2(G39-C54) demonstrated activity against two Gram-negative human bacterial pathogens, Escherichia coli and Klebsiella pneumoniae. Quantitative proteomics revealed changes in the E. coli proteome in response to treatment of sub-lethal concentrations of the truncated defensin, including bacterial outer membrane (OM) and iron acquisition/processing related proteins. Modification of OM charge is a common response of Gram-negative bacteria to membrane lytic antimicrobial peptides (AMPs) to reduce electrostatic interactions, and this mechanism of action was confirmed for Atr-DEF2(G39-C54) via an N-phenylnaphthalen-1-amine uptake assay. Additionally, in vitro assays confirmed the capacity of Atr-DEF2(G39-C54) to reduce Fe3+ and chelate Fe2+ at cell culture relevant concentrations, thus limiting the availability of essential enzymatic cofactors. Conclusions This study highlights the utility of plant defensin γ-core motif synthetic analogs for characterization of novel defensin activity. Proteomic changes in E. coli after treatment with Atr-DEF2(G39-C54) supported the hypothesis that membrane lysis is an important component of γ-core motif mediated antibacterial activity but also emphasized that other properties, such as metal sequestration, may contribute to a multifaceted mechanism of action.


2010 ◽  
Vol 5 (1) ◽  
pp. 1934578X1000500 ◽  
Author(s):  
Ashraf El-Bassuony ◽  
Sameh AbouZid

A novel prenylated flavanoid, isonymphaeol-D (1), together with two known compounds, isonymphaeol-B (2) and nymphaeol-B (3), were isolated from Egyptian propolis. The structures of the isolated compounds were determined by various spectroscopic methods. 1 exhibited antibacterial activity against Gram-positive (Bacillus cereus, Staphylococcus aureus) and Gram-negative strains (Serratia sp., Pseudomonos sp., Escherichia coli).


Nanoscale ◽  
2019 ◽  
Vol 11 (29) ◽  
pp. 13845-13852 ◽  
Author(s):  
Jisu Hong ◽  
Ji Young Choi ◽  
Kyunghun Kim ◽  
Nam-Suk Lee ◽  
Jiqiang Li ◽  
...  

A new small-molecule donor with a DTBDT core exhibits apposite blend morphologies and a maximum PCE of 9.18% by side chain engineering and solvent vapor annealing.


2018 ◽  
Vol 9 (37) ◽  
pp. 4611-4616 ◽  
Author(s):  
Jiangna Guo ◽  
Jing Qin ◽  
Yongyuan Ren ◽  
Bin Wang ◽  
Hengqing Cui ◽  
...  

Imidazolium (Im), quaternary ammonium (Qa), and 1,4-diazabicyclo[2.2.2]octane-1,4-diium (DABCO-diium) cation-based small molecule cationic compounds and their corresponding side-chain/main-chain cationic polymers were synthesized.


2020 ◽  
Vol 840 ◽  
pp. 293-299
Author(s):  
Poedji Loekitowati Hariani ◽  
Muryati Muryati ◽  
Muhammad Said ◽  
Salni Salni

Nano-hydroxyapatite was synthesized by coprecipitation method and tested its antibacterial properties. Nano-hydroxyapatite was synthesized using CaO precursors from snakehead (Channa striata) fish bones and (NH4)2HPO4. The synthesis was carried out with temperature variations of 30, 60, 80, and 100 °C. Antibacterial activity was determined using two types of bacteria, namely gram-positive and gram-negative. The XRD spectra show that the highest peak is hydroxyapatite synthesized at a temperature of 100 °C. Hydroxyapatite produced from various synthesis temperatures has the size of nanoparticles in the range 37.32-49.27 nm. The nano-hydroxyapatite functional groups are characterized using FTIR, the analysis indicate the presence of OH, CO32‒ and PO43‒. The molar ratio Ca/P is obtained of 1.71 approaching theoretical hydroxyapatite of 1.67. The resulted nano-hydroxyapatite has significant antibacterial properties to Escherichia coli and Staphylococcus aureus.


2015 ◽  
Vol 761 ◽  
pp. 402-406 ◽  
Author(s):  
Siti Aishah Mohd Hanim ◽  
Nik Ahmad Nizam Nik Malek ◽  
Zaharah Ibrahim ◽  
Mashitah Mad Salim ◽  
Nur Isti'anah Ramli ◽  
...  

The antibacterial activity of functionalized zeolite NaY (CBV100) with different concentrations of 3-aminopropyltriethoxysilane (APTES) (0.01, 0.05, 0.20 and 0.40 M) was studied against Staphylococcus aureus ATCC 6538 (Gram positive) and Escherichia coli ATCC 11229 (Gram negative) through disc diffusion technique (DDT). The characterization of functionalized zeolite NaY with fourier transform infrared (FTIR) spectroscopy indicated the attachment of APTES on zeolite NaY. Through DDT, the inhibition zone of functionalized zeolite NaY increased proportionally to the amount of the amine-functional group attached onto zeolite NaY. Functionalized zeolite NaY showed higher antibacterial activity against Gram-positive compared to Gram-negative bacteria. It can be concluded from this study that amine-functionalized zeolite NaY shows evidence of antibacterial activities.


2009 ◽  
Vol 53 (10) ◽  
pp. 4357-4367 ◽  
Author(s):  
Timothy J. Opperman ◽  
Steven M. Kwasny ◽  
John D. Williams ◽  
Atiyya R. Khan ◽  
Norton P. Peet ◽  
...  

ABSTRACT Staphylococcus epidermidis and Staphylococcus aureus are the leading causative agents of indwelling medical device infections because of their ability to form biofilms on artificial surfaces. Here we describe the antibiofilm activity of a class of small molecules, the aryl rhodanines, which specifically inhibit biofilm formation of S. aureus, S. epidermidis, Enterococcus faecalis, E. faecium, and E. gallinarum but not the gram-negative species Pseudomonas aeruginosa or Escherichia coli. The aryl rhodanines do not exhibit antibacterial activity against any of the bacterial strains tested and are not cytotoxic against HeLa cells. Preliminary mechanism-of-action studies revealed that the aryl rhodanines specifically inhibit the early stages of biofilm development by preventing attachment of the bacteria to surfaces.


Sign in / Sign up

Export Citation Format

Share Document