The Ultra-Broad-Spectrum Beta-lactamase Inhibitor QPX7728 Restores the Potency of Multiple Oral Beta-lactam Antibiotics against Beta-lactamase Producing Strains of Resistant Enterobacterales

Author(s):  
Olga Lomovskaya ◽  
Debora Rubio-Aparicio ◽  
Ruslan Tsivkovski ◽  
Jeff Loutit ◽  
Michael Dudley

QPX7728 is a cyclic boronate ultra-broad-spectrum beta-lactamase inhibitor, with potent activity against both serine and metallo beta-lactamases. QPX7728 can be delivered systemically by the IV or oral route of administration. Oral β-lactam antibiotics alone or in combination with QPX7728 were evaluated for 1) sensitivity to hydrolysis by various common beta-lactamases and inhibition of hydrolysis by QPX7728; 2) the impact of non-beta-lactamase-mediated resistance mechanisms on potency of beta-lactams; and 3) in vitro activity against a panel of clinical strains producing diverse beta-lactamases. The carbapenem tebipenem had stability for many serine beta-lactamases from all molecular classes followed by cephalosporin ceftibuten. Addition of QPX7728 to tebipenem, ceftibuten and mecillinam completely reversed beta-lactamase-mediated resistance in cloned beta-lactamases from serine and metallo enzyme classes; the degree of potentiation of other beta-lactams varied according to the beta-lactamase produced. Tebipenem, ceftibuten and cefixime had the lowest MICs against laboratory strains with various combinations of beta-lactamases and the intrinsic drug-resistance mechanisms of porin and efflux mutations. There was a high degree of correlation between potency of various combinations against cloned beta-lactamases and efflux/porin mutants and the activity against clinical isolates, showing the importance of both inhibition of beta-lactamase along with minimal impact of general intrinsic resistance mechanisms affecting the beta-lactam. Tebipenem and ceftibuten appeared to be the best beta-lactam antibiotics when combined with QPX7728 for activity against Enterobacterales that produce serine or metallo beta-lactamases.

2020 ◽  
Vol 64 (6) ◽  
Author(s):  
Olga Lomovskaya ◽  
Kirk Nelson ◽  
Debora Rubio-Aparicio ◽  
Ruslan Tsivkovski ◽  
Dongxu Sun ◽  
...  

ABSTRACT QPX7728 is an ultrabroad-spectrum boronic acid beta-lactamase inhibitor that demonstrates inhibition of key serine and metallo-beta-lactamases at a nanomolar concentration range in biochemical assays with purified enzymes. The broad-spectrum inhibitory activity of QPX7728 observed in biochemical experiments translates into enhancement of the potency of many beta-lactams against strains of target pathogens producing beta-lactamases. The impacts of bacterial efflux and permeability on inhibitory potency were determined using isogenic panels of KPC-3-producing isogenic strains of Klebsiella pneumoniae and Pseudomonas aeruginosa and OXA-23-producing strains of Acinetobacter baumannii with various combinations of efflux and porin mutations. QPX7728 was minimally affected by multidrug resistance efflux pumps either in Enterobacteriaceae or in nonfermenters, such as P. aeruginosa or A. baumannii. Against P. aeruginosa, the potency of QPX7728 was further enhanced when the outer membrane was permeabilized. The potency of QPX7728 against P. aeruginosa was not affected by inactivation of the carbapenem porin OprD. While changes in OmpK36 (but not OmpK35) reduced the potency of QPX7728 (8- to 16-fold), QPX7728 (4 μg/ml) nevertheless completely reversed the KPC-mediated meropenem resistance in strains with porin mutations, consistent with the lesser effect of these mutations on the potency of QPX7728 compared to that of other agents. The ultrabroad-spectrum beta-lactamase inhibition profile, combined with enhancement of the activity of multiple beta-lactam antibiotics with various sensitivities to the intrinsic resistance mechanisms of efflux and permeability, indicates that QPX7728 is a useful inhibitor for use with multiple beta-lactam antibiotics.


Author(s):  
Olga Lomovskaya ◽  
Debora Rubio-Aparicio ◽  
Kirk Nelson ◽  
Dongxu Sun ◽  
Ruslan Tsivkovski ◽  
...  

QPX7728 is an ultra-broad-spectrum beta-lactamase inhibitor with potent inhibition of key serine and metallo beta-lactamases. QPX7728 enhances the potency of multiple beta-lactams in beta-lactamase producing Enterobacterales and Acinetobacter spp. In this study we evaluated the in vitro activity of QPX7728 (8 μg/ml) combined with multiple beta-lactams against clinical isolates of Pseudomonas aeruginosa with varying beta-lactam resistance mechanisms. Seven-hundred-ninety clinical isolates were included in this study; 500 isolates, termed a “representative panel”, were selected to be representative the MIC distribution of meropenem (MEM), ceftazidime-avibactam (CAZ-AVI), and ceftolozane-tazobactam (TOL-TAZ) resistance for clinical isolates according to 2017 SENTRY surveillance data (representative panel). An additional 290 selected isolates (“challenge panel”), that were either non-susceptible to MEM or were resistant to TOL-TAZ or CAZ-AVI were also tested; 61 strains carried metallo beta-lactamases (MBLs), 211 strains were defective in the carbapenem porin OprD and 185 strains had the MexAB-OprM efflux pump overproduced based on a phenotypic test. Against the representative panel, susceptibility for all QPX7728/beta-lactam combinations was >90%. For the challenge panel, QPX-ceftolozane (TOL) was the most active combination (78.6% susceptible) followed by equipotent QPX-piperacillin (PIP) and QPX-cefepime (FEP), restoring susceptibility in 70.3% of strains (CLSI breakpoints for the beta-lactam compound alone). For MBL-negative strains, QPX-TOL and QPX-FEP restored the MIC values to susceptibility rates in ∼90% and ∼80% of strains, respectively, vs 68-70% for QPX-MEM and QPX-PIP and 63-65% for TOL-TAZ and CAZ-AVI. For MBL-positive strains, QPX-PIP restored the MIC to susceptibility values for ∼70% of strains vs 2-40% for other combinations. Increased efflux and impaired OprD had varying effect on QPX7728 combination depending on the partner beta-lactam tested. QPX7728 enhanced the potency of multiple beta-lactams against P. aeruginosa, with varying results according to the beta-lactamase production and other intrinsic resistance mechanisms.


2020 ◽  
Vol 64 (11) ◽  
Author(s):  
Mojgan Sabet ◽  
Ziad Tarazi ◽  
David C. Griffith

ABSTRACT Resistance to beta-lactams has created a major clinical issue. QPX7728 is a novel ultrabroad-spectrum cyclic boronic acid beta-lactamase inhibitor with activity against both serine and metallo-beta-lactamases developed to address this resistance for use in combination with beta-lactam antibiotics. The objective of these studies was to evaluate the activity of QPX7728 in combination with multiple beta-lactams against carbapenem-resistant Klebsiella pneumoniae isolates in a neutropenic mouse thigh infection model. Neutropenic mice were infected with strains with potentiated beta-lactam MICs of ≤2 mg/liter in the presence of 8 mg/liter QPX7728. Two strains of carbapenem-resistant K. pneumoniae were tested with aztreonam, biapenem, cefepime, ceftazidime, ceftolozane, and meropenem alone or in combination with 12.5, 25, or 50 mg/kg of body weight of QPX7728 every 2 hours for 24 hours. Treatment with all beta-lactams alone either was bacteriostatic or allowed for bacterial growth. The combination of QPX7728 plus each of these beta-lactams produced bacterial killing at all QPX7728 doses tested. Overall, these data suggest that QPX7728 administered in combination with different partner beta-lactam antibiotics may have utility in the treatment of bacterial infections due to carbapenem-resistant K. pneumoniae.


2017 ◽  
Vol 61 (11) ◽  
Author(s):  
Olga Lomovskaya ◽  
Dongxu Sun ◽  
Debora Rubio-Aparicio ◽  
Kirk Nelson ◽  
Ruslan Tsivkovski ◽  
...  

ABSTRACT Vaborbactam (formerly RPX7009) is a new beta-lactamase inhibitor based on a cyclic boronic acid pharmacophore. The spectrum of beta-lactamase inhibition by vaborbactam and the impact of bacterial efflux and permeability on its activity were determined using a panel of strains with beta-lactamases cloned from various classes and a panel of Klebsiella pneumoniae carbapenemase 3 (KPC-3)-producing isogenic strains with various combinations of efflux and porin mutations. Vaborbactam is a potent inhibitor of class A carbapenemases, such as KPC, as well as an inhibitor of other class A (CTX-M, SHV, TEM) and class C (P99, MIR, FOX) beta-lactamases. Vaborbactam does not inhibit class D or class B carbapenemases. When combined with meropenem, vaborbactam had the highest potency compared to the potencies of vaborbactam in combination with other antibiotics against strains producing the KPC beta-lactamase. Consistent with broad-spectrum beta-lactamase inhibition, vaborbactam reduced the meropenem MICs for engineered isogenic strains of K. pneumoniae with increased meropenem MICs due to a combination of extended-spectrum beta-lactamase production, class C beta-lactamase production, and reduced permeability due to porin mutations. Vaborbactam crosses the outer membrane of K. pneumoniae using both OmpK35 and OmpK36, but OmpK36 is the preferred porin. Efflux by the multidrug resistance efflux pump AcrAB-TolC had a minimal impact on vaborbactam activity. Investigation of the vaborbactam concentration necessary for restoration of meropenem potency showed that vaborbactam at 8 μg/ml results in meropenem MICs of ≤2 μg/ml in the most resistant engineered strains containing multiple mutations. Vaborbactam is a highly active beta-lactamase inhibitor that restores the activity of meropenem and other beta-lactam antibiotics in beta-lactamase-producing bacteria, particularly KPC-producing carbapenem-resistant Enterobacteriaceae.


1995 ◽  
Vol 8 (4) ◽  
pp. 557-584 ◽  
Author(s):  
D M Livermore

beta-Lactamases are the commonest single cause of bacterial resistance to beta-lactam antibiotics. Numerous chromosomal and plasmid-mediated types are known and may be classified by their sequences or phenotypic properties. The ability of a beta-lactamase to cause resistance varies with its activity, quantity, and cellular location and, for gram-negative organisms, the permeability of the producer strain. beta-Lactamases sometimes cause obvious resistance to substrate drugs in routine tests; often, however, these enzymes reduce susceptibility without causing resistance at current, pharmacologically chosen breakpoints. This review considers the ability of the prevalent beta-lactamases to cause resistance to widely used beta-lactams, whether resistance is accurately reflected in routine tests, and the extent to which the antibiogram for an organism can be used to predict the type of beta-lactamase that it produces.


1988 ◽  
Vol 1 (1) ◽  
pp. 109-123 ◽  
Author(s):  
K Bush

beta-Lactamases constitute the major defense mechanism of pathogenic bacteria against beta-lactam antibiotics. When the beta-lactam ring of this antibiotic class is hydrolyzed, antimicrobial activity is destroyed. Although beta-lactamases have been identified with clinical failures for over 40 years, enzymes with various abilities to hydrolyze specific penicillins or cephalosporins are appearing more frequently in clinical isolates. One approach to counteracting this resistance mechanism has been through the development of beta-lactamase inactivators. beta-Lactamase inhibitors include clavulanic acid and sulbactam, molecules with minimal antibiotic activity. However, when combined with safe and efficacious penicillins or cephalosporins, these inhibitors can serve to protect the familiar beta-lactam antibiotics from hydrolysis by penicillinases or broad-spectrum beta-lactamases. Both of these molecules eventually inactivate the target enzymes permanently. Although clavulanic acid exhibits more potent inhibitory activity than sulbactam, especially against the TEM-type broad-spectrum beta-lactamases, the spectrum of inhibitory activities are very similar. Neither of these inhibitors acts as a good inhibitor of the cephalosporinases. Clavulanic acid has been most frequently combined with amoxicillin in the orally active Augmentin and with ticarcillin in the parenteral beta-lactam combination Timentin. Sulbactam has been used primarily to protect ampicillin from enzymatic hydrolysis. Sulbactam has been used either in the orally absorbed prodrug form as sultamicillin or as the injectable combination ampicillin-sulbactam. Synergy has been demonstrated for these combinations for most members of the Enterobacteriaceae, although those organisms that produce cephalosporinases are not well inhibited. Synergy has also been observed for Neisseria gonorrhoeae, Haemophilus influenzae, penicillinase-producing Staphylococcus aureus, and anaerobic organisms. These antibiotic combinations have been used clinically to treat urinary tract infections, bone and soft-tissue infections, gonorrhea, respiratory infections, and otitis media. Gastrointestinal side effects have been reported for Augmentin and sultamicillin; most side effects with these agents have been mild. Although combination therapy with beta-lactamase inactivators has been used successfully, the problem of resistance development to two agents must be considered. Induction of cephalosporinases can occur with clavulanic acid. Permeability mutants could arise, especially with added pressure from a second beta-lactam.(ABSTRACT TRUNCATED AT 250 WORDS)


2020 ◽  
Vol 64 (8) ◽  
Author(s):  
Kirk Nelson ◽  
Debora Rubio-Aparicio ◽  
Dongxu Sun ◽  
Michael Dudley ◽  
Olga Lomovskaya

ABSTRACT QPX7728 is an investigational ultrabroad-spectrum-beta-lactamase inhibitor (BLI) with potent inhibition of key serine and metallo-beta-lactamases. QPX7728 enhances the potency of many beta-lactams, including carbapenems, in isogenic strains of Gram-negative bacteria producing various beta-lactamases. The potency of meropenem alone and in combination with QPX7728 (tested at fixed concentrations of 1 to 16 μg/ml) was tested against 598 clinical isolates of carbapenem-resistant Enterobacterales (CRE). The panel included 363 strains producing serine carbapenemases, 224 strains producing metallo-beta-lactamases (151 NDM, 53 VIM, and 20 IMP), and 50 strains that did not carry any known carbapenemases but were resistant to meropenem (MIC ≥ 4 μg/ml). The panel was also enriched in strains that had various defects in the major porins OmpK35/OmpF and OmpK36/OmpC. Increasing concentrations of QPX7728 restored the potency of meropenem against CRE, with the meropenem MIC90 decreasing from >64 μg/ml to 0.5 μg/ml for QPX7728 (8 μg/ml). QPX7728 significantly increased the potency of meropenem against CRE with multiple resistance mechanisms; the reduction in the meropenem MIC90 with QPX7728 (8 μg/ml) ranged from 32- to >256-fold. Compared with other beta-lactamase inhibitor combinations, meropenem-vaborbactam, ceftazidime-avibactam, and imipenem-relebactam, meropenem with QPX7728 was the most potent beta-lactam–BLI combination tested against all groups of CRE with multiple resistance mechanisms. Defects in OmpK36 in KPC-producing strains markedly decreased the potency of meropenem with vaborbactam (128-fold increase in the MIC90), whereas only an 8- to 16-fold change was observed with QPX7728 plus meropenem. More than 90% of various CRE subsets (including those with reduced permeability) were susceptible to ≤8 μg/ml of meropenem with QPX7728 at 8 μg/ml or lower. The combination of QPX7728 with meropenem against CRE has an attractive microbiological profile in CRE with multiple resistance mechanisms.


1988 ◽  
Vol 9 (7) ◽  
pp. 323-327
Author(s):  
Francine R. Salamone

Sulbactam/ampicillin was recently marketed for use in several infections caused by beta-lactamase-producing organisms. Sulbactam is the second beta-lactamase inhibitor to become available in the United States. Interest in inhibition of beta-lactamases arose in the late 1960s when a combination consisting of an antibacterial agent and an enzyme inhibitor was found effective in the treatment of certain resistant gram-negative infections. It is now well accepted that the addition of a beta-lactamase inhibitor to a beta-lactam antibiotic may expand its usefulness in a variety of infections.The penicillin derivatives, known as beta-lactam antibiotics, possess a four-membered ring (beta-lactam ring) fused to a second ring (Figure). It is the beta-lactam ring that is essential for the inhibition of bacterial cell wall synthesis and subsequent bactericidal activity of these agents. The development of resistance to beta-lactam antibiotics may occur by a number of mechanisms, although the most important is bacterial production of enzymes (beta-lactamases) that are capable of beta-lactam ring hydrolysis and inactivation.Sulbactam resembles the penicillin derivatives in structure (Figure) and is able to preserve their activity by its ability to inhibit the action of beta-lactamases, particularly those of the Richmond classes II-V (gram-negative) and the group A beta-lactamases (gram-positive). Sulbactam is referred to as a “suicide inhibitor” because while forming an irreversible complex with the enzyme, it is destroyed in the process. By virtue of its ability to render the beta-lactamases inactive, sulbactam has been combined with ampicillin in an effort to restore its activity against a number of pathogens that have developed resistance by this mechanism.


Pharmacy ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 77 ◽  
Author(s):  
Kayla R. Stover ◽  
Katie E. Barber ◽  
Jamie L. Wagner

Although beta-lactam allergies are an emerging focus of stewardship programs and interventions, less is publicly released regarding allergies to beta-lactamase inhibitors. This review presents and evaluates the data regarding allergic reactions with beta-lactamase inhibitors. Clavulanate, sulbactam, and tazobactam are beta-lactam-based beta-lactamase inhibitors that are combined with several penicillins or cephalosporins in order to preserve antimicrobial activity in the presence of beta-lactamases. Avibactam, relebactam, and vaborbactam are non-beta-lactam beta-lactamase inhibitors that are combined with cephalosporins or carbapenems in order to expand the antimicrobial activity against broader-spectrum beta-lactamases. Case reports document hypersensitivity reactions to clavulanate, sulbactam, and tazobactam, but not to avibactam, relebactam, or vaborbactam. Based on these reports and considering the chemical structures, cross-allergenicity with beta-lactams is likely with sulbactam and tazobactam. Considering the slightly altered beta-lactam structure, cross-allergenicity is less likely with clavulanate, but still possible. It appears that cross-allergenicity between beta-lactam antimicrobials and the newer, non-beta-lactam beta-lactamase inhibitors is unlikely. It is important for clinicians to perform allergy testing to both the beta-lactam and the beta-lactamase inhibitor in order to confirm the specific allergy and reaction type.


Sign in / Sign up

Export Citation Format

Share Document