scholarly journals In VitroScreening Test Using Leishmania Promastigotes Stably Expressing mCherry Protein

2014 ◽  
Vol 58 (3) ◽  
pp. 1825-1828 ◽  
Author(s):  
Paola Vacchina ◽  
Miguel A. Morales

ABSTRACTTransgenicLeishmania majorandLeishmania donovaniaxenic promastigotes constitutively expressing mCherry were used forin vitroantileishmanial drug screening. This method requires minimal sample manipulation and can be easily adapted to automatic drug tests, allowing primary high-throughput screenings without the need for expensive and sophisticated instruments.

2007 ◽  
Vol 51 (4) ◽  
pp. 1425-1430 ◽  
Author(s):  
M. Rakotomanga ◽  
S. Blanc ◽  
K. Gaudin ◽  
P. Chaminade ◽  
P. M. Loiseau

ABSTRACT Miltefosine (hexadecylphosphocholine [HePC]) is the first orally active antileishmanial drug. Transient HePC treatment of Leishmania donovani promastigotes at 10 μM significantly reduced the phosphatidylcholine content and enhanced the phosphatidylethanolamine (PE) content in parasite membranes, suggesting a partial inactivation of PE-N-methyltransferase. Phospholipase D activity did not seem to be affected by HePC. In addition, the enhancement of the lysophosphatidylcholine content could be ascribed to phospholipase A2 activation. Moreover, transient HePC treatment had no effect on the fatty acid alkyl chain length or the fatty acid unsaturation rate. Concerning sterols, we found a strong reduction of the C24 alkylated sterol content, and the enhancement of the cholesterol content could be the result of the HePC condensation effect with sterols. Because some of the effects observed after transient HePC treatment were different from those previously observed in HePC-resistant parasites, it could be hypothesized that continuous in vitro drug pressure induces the mechanisms of regulation in Leishmania lipid metabolism.


2018 ◽  
Vol 63 (2) ◽  
pp. e00904-18 ◽  
Author(s):  
Celia Fernández-Rubio ◽  
Esther Larrea ◽  
José Peña Guerrero ◽  
Eduardo Sesma Herrero ◽  
Iñigo Gamboa ◽  
...  

ABSTRACTConventional chemotherapy against leishmaniasis includes agents exhibiting considerable toxicity. In addition, reports of drug resistance are not uncommon. Thus, safe and effective therapies are urgently needed. Isoselenocyanate compounds have recently been identified with potential antitumor activity. It is well known that some antitumor agents demonstrate effects againstLeishmania. In this study, thein vitroleishmanicidal activities of several organo-selenium and organo-sulfur compounds were tested againstLeishmania majorandLeishmania amazonensisparasites, using promastigotes and intracellular amastigote forms. The cytotoxicity of these agents was measured in murine peritoneal macrophages and their selectivity indexes were calculated. One of the tested compounds, the isoselenocyanate derivative NISC-6, showed selectivity indexes 2- and 10-fold higher than those of the reference drug amphotericin B when evaluated inL. amazonensisandL. major, respectively. The American strain (L. amazonensis) was less sensitive to NISC-6 thanL. major, showing a trend similar to that observed previously for amphotericin B. In addition, we also observed that NISC-6 significantly reduced the number of amastigotes per infected macrophage. On the other hand, we showed that NISC-6 decreases expression levels ofLeishmaniagenes involved in the cell cycle, such astopoisomerase-2(TOP-2),PCNA, andMCM4, therefore contributing to its leishmanicidal activity. The effect of this compound on cell cycle progression was confirmed by flow cytometry. We observed a significant increase of cells in the G1phase and a dramatic reduction of cells in the S phase compared to untreated cells. Altogether, our data suggest that the isoselenocyanate NISC-6 may be a promising candidate for new drug development against leishmaniasis.


2014 ◽  
Vol 59 (2) ◽  
pp. 753-762 ◽  
Author(s):  
Anita Ordas ◽  
Robert-Jan Raterink ◽  
Fraser Cunningham ◽  
Hans J. Jansen ◽  
Malgorzata I. Wiweger ◽  
...  

ABSTRACTThe translational value of zebrafish high-throughput screens can be improved when more knowledge is available on uptake characteristics of potential drugs. We investigated reference antibiotics and 15 preclinical compounds in a translational zebrafish-rodent screening system for tuberculosis. As a major advance, we have developed a new tool for testing drug uptake in the zebrafish model. This is important, because despite the many applications of assessing drug efficacy in zebrafish research, the current methods for measuring uptake using mass spectrometry do not take into account the possible adherence of drugs to the larval surface. Our approach combines nanoliter sampling from the yolk using a microneedle, followed by mass spectrometric analysis. To date, no single physicochemical property has been identified to accurately predict compound uptake; our method offers a great possibility to monitor how any novel compound behaves within the system. We have correlated the uptake data with high-throughput drug-screening data fromMycobacterium marinum-infected zebrafish larvae. As a result, we present an improved zebrafish larva drug-screening platform which offers new insights into drug efficacy and identifies potential false negatives and drugs that are effective in zebrafish and rodents. We demonstrate that this improved zebrafish drug-screening platform can complement conventional models ofin vivoMycobacterium tuberculosis-infected rodent assays. The detailed comparison of two vertebrate systems, fish and rodent, may give more predictive value for efficacy of drugs in humans.


2020 ◽  
Vol 64 (8) ◽  
Author(s):  
Shailendra Yadav ◽  
Jitendra Kuldeep ◽  
Mohammad I. Siddiqi ◽  
Neena Goyal

ABSTRACT T-complex protein-1 (TCP1) is a ubiquitous group II chaperonin and is known to fold various proteins, such as actin and tubulin. In Leishmania donovani, the γ subunit of TCP1 (LdTCP1γ) has been cloned and characterized. It forms a high-molecular-weight homo-oligomeric complex that performs ATP-dependent protein folding. In the present study, we evaluated the essentiality of the LdTCP1γ gene. Gene replacement studies indicated that LdTCP1γ is essential for parasite survival. The LdTCP1γ single-allele-replacement mutants exhibited slowed growth and decreased infectivity in mouse macrophages compared to the growth and infectivity of the wild-type parasites. Modulation of LdTCP1γ expression in promastigotes also modulated cell cycle progression. Suramin, an antitrypanosomal drug, not only inhibited the luciferase refolding activity of the recombinant LdTCP1γ (rLdTCP1γ) homo-oligomeric complex but also exhibited potential antileishmanial efficacy both in vitro and in vivo. The interaction of suramin and LdTCP1γ was further validated by isothermal titration calorimetry. The study suggests LdTCP1γ as a potential drug target and also provides a framework for the development of a new class of drugs.


2014 ◽  
Vol 80 (16) ◽  
pp. 4887-4897 ◽  
Author(s):  
Guntram Christiansen ◽  
Alexander Goesmann ◽  
Rainer Kurmayer

ABSTRACTSeveral gene clusters that are responsible for toxin synthesis in bloom-forming cyanobacteria have been found to be associated with transposable elements (TEs). In particular, insertion sequence (IS) elements were shown to play a role in the inactivation or recombination of the genes responsible for cyanotoxin synthesis. Plasmids have been considered important vectors of IS element distribution to the host. In this study, we aimed to elucidate the IS elements propagated on the plasmids and the chromosome of the toxic cyanobacteriumPlanktothrix agardhiiNIVA-CYA126/8 by means of high-throughput sequencing. In total, five plasmids (pPA5.5, pPA14, pPA50, pPA79, and pPA115, of 5, 6, 50, 79, and 120 kbp, respectively) were elucidated, and two plasmids (pPA5.5, pPA115) were found to propagate full IS element copies. Large stretches of shared DNA information between plasmids were constituted of TEs. Two plasmids (pPA5.5, pPA14) were used as candidates to engineer shuttle vectors (named pPA5.5SV and pPA14SV, respectively)in vitroby PCR amplification and the subsequent transposition of the Tn5 cattransposon containing the R6Kγ origin of replication ofEscherichia coli. While pPA5.5SV was found to be fully segregated, pPA14SV consistently co-occurred with its wild-type plasmid even under the highest selective pressure. Interestingly, the Tn5 cattransposon became transferred by homologous recombination into another plasmid, pPA50. The availability of shuttle vectors is considered to be of relevance in investigating genome plasticity as a consequence of homologous recombination events. Combining the potential of high-throughput sequencing andin vitroproduction of shuttle vectors makes it simple to produce species-specific shuttle vectors for many cultivable prokaryotes.


2019 ◽  
Vol 85 (12) ◽  
Author(s):  
Tong Wang ◽  
Min Wang ◽  
Qingwen Zhang ◽  
Shiyang Cao ◽  
Xiang Li ◽  
...  

ABSTRACTMany genes in the bacterial pathogenYersinia pestis, the causative agent of three plague pandemics, remain uncharacterized, greatly hampering the development of measures for plague prevention and control. Clustered regularly interspaced short palindromic repeat interference (CRISPRi) has been shown to be an effective tool for gene knockdown in model bacteria. In this system, a catalytically dead Cas9 (dCas9) and a small guide RNA (sgRNA) form a complex, binding to the specific DNA target through base pairing, thereby impeding RNA polymerase binding and causing target gene repression. Here, we introduce an optimized CRISPRi system usingStreptococcus pyogenesCas9-derived dCas9 for gene knockdown inY. pestis. Multiple genes harbored on either the chromosome or plasmids ofY. pestiswere efficiently knocked down (up to 380-fold) in a strictly anhydrotetracycline-inducible manner using this CRISPRi approach. Knockdown ofhmsH(responsible for biofilm formation) orcspB(encoding a cold shock protein) resulted in greatly decreased biofilm formation or impaired cold tolerance inin vitrophenotypic assays. Furthermore, silencing of the virulence-associated genesyscBorailusing this CRISPRi system resulted in attenuation of virulence in HeLa cells and mice similar to that previously reported foryscBandailnull mutants. Taken together, our results confirm that this optimized CRISPRi system can reversibly and efficiently repress the expression of target genes inY. pestis, providing an alternative to conventional gene knockdown techniques, as well as a strategy for high-throughput phenotypic screening ofY. pestisgenes with unknown functions.IMPORTANCEYersiniapestisis a lethal pathogen responsible for millions of human deaths in history. It has also attracted much attention for potential uses as a bioweapon or bioterrorism agent, against which new vaccines are desperately needed. However, manyY. pestisgenes remain uncharacterized, greatly hampering the development of measures for plague prevention and control. Clustered regularly interspaced short palindromic repeat interference (CRISPRi) has been successfully used in a variety of bacteria in functional genomic studies, but no such genetic tool has been reported inY. pestis. Here, we systematically optimized the CRISPRi approach for use inY. pestis, which ultimately repressed target gene expression with high efficiency in a reversible manner. Knockdown of functional genes using this method produced phenotypes that were readily detected byin vitroassays, cell infection assays, and mouse infection experiments. This is a report of a CRISPRi approach inY. pestisand highlights the potential use of this approach in high-throughput functional genomics studies of this pathogen.


2013 ◽  
Vol 81 (9) ◽  
pp. 3068-3076 ◽  
Author(s):  
Carolyn R. Morris ◽  
Christen L. Grassel ◽  
Julia C. Redman ◽  
Jason W. Sahl ◽  
Eileen M. Barry ◽  
...  

ABSTRACTShigellaspecies Gram-negative bacteria which cause a diarrheal disease, known as shigellosis, by invading and destroying the colonic mucosa and inducing a robust inflammatory response. With no vaccine available, shigellosis annually kills over 600,000 children in developing countries. This study demonstrates the utility of combining high-throughput bioinformatic methods within vitroandin vivoassays to provide new insights into pathogenesis. Comparisons ofin vivoandin vitrogene expression identified genes associated with intracellular growth. Additional bioinformatics analyses identified genes that are present inS. flexneriisolates but not in the three otherShigellaspecies. Comparison of these two analyses revealed nine genes that are differentially expressed during invasion and that are specific toS. flexneri. One gene, a DeoR family transcriptional regulator with decreased expression during invasion, was further characterized and is now designatedicgR, forintracellulargrowthregulator. Deletion oficgRcaused no difference in growthin vitrobut resulted in increased intracellular replication in HCT-8 cells. Furtherin vitroandin vivostudies using high-throughput sequencing of RNA transcripts (RNA-seq) of an isogenic ΔicgRmutant identified 34 genes that were upregulated under both growth conditions. This combined informatics and functional approach has allowed the characterization of a gene and pathway previously unknown inShigellapathogenesis and provides a framework for further identification of novel virulence factors and regulatory pathways.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2522-2522
Author(s):  
Katherine Tarlock ◽  
C. Anthony Blau ◽  
Timothy Martins ◽  
Soheil Meshinchi

Abstract The overall survival (OS) of pediatric acute myeloid leukemia (AML) exceeds 60%, however for high risk (HR) patients, including high allelic ratio FLT3/ITD+, survival remains poor. FLT3/ITD is one of the first genomic alterations in AML to be exploited for therapeutic benefit as it has greater sensitivity to the pro-apoptotic effects of FLT3-inhibitors. Children’s Oncology Group (COG) phase III AML trial AAML1031 is investigating the role of sorafenib in combination with chemotherapy in HR FLT3/ITD+ patients. In vitro and in vivo studies indicate that resistance to FLT3-inhibitors can develop through varying mechanisms including up-regulation of FLT3 receptor, acquisition of secondary mutations, or activation of alternate survival mechanisms leading to apoptotic escape. For FLT3/ITD+ patients who relapse despite treatment with FLT3-inhibitors, there are often no therapeutic options and survival is very poor. In evaluation of therapeutic options for those who relapse on sorafenib, we developed an in vitro resistance model using the FLT3/ITD+ cell line MV4-11. Resistance was induced thru long-term exposure to incrementally increasing doses of sorafenib. Two distinct cell lines with resistance at 10 and 100 fold above the IC50 of naïve MV4-11 were generated for experimental evaluation. Genotypic and phenotypic characterization of the resistant cells was conducted by multidimensional flow cytometry (MDF), conventional karyotyping, and mutational profiling. MDF revealed an overall similar immunophenotype, however the resistant cells were significantly more homogeneous for expression of HLA-DR and had significantly higher CD11b expression compared to their naïve counterparts. CD135 expression was minimally increased in the resistant cells. In comparison of the karyotypes, the resistant cells were a more homogenous population with emergence of one dominant clone and disappearance of a number of pre-existing sub-clones. Mutational profiling by Sanger sequencing revealed a novel N841Y mutation in activation loop, an area implicated in TKI-resistance. Using a high throughput drug screening assay, we explored sensitivity profiles of the naïve and resistant MV4-11 cells to 163 oncology agents, including 45 FDA approved and 118 investigational agents that target a number of key pathways regulating cell growth, differentiation, and survival. The naïve MV4-11s had a sorafenib IC50 of 1.3 nM (published 1-5nM) and resistant cells had IC50 of approximately 2-log folds above the naïve, which was consistent to what we had seen in our lab-based validations. We initially assessed whether resistance to sorafenib induces cross-resistance to other TKIs. Agents in the panel with previously demonstrated efficacy for FLT3/ITD included quizartinib (AC-220), tandutinib, ponatinib, sunitinib, and midostaurin, and in all cases sorafenib-resistant cells were also more resistant to these agents. We then examined whether we could identify agents with efficacy in the resistant cells. We identified 5 novel agents to which the resistant cells retained sensitivity. Two bcl-2 inhibitors tested maintained sensitivity in the resistant cells with IC50s in the 20-100nM range. In addition, YM-155, a survivin inhibitor, also maintained sensitivity in the resistant cells with IC50s of approximately 25-50nM across the cell lines. Survivin over-expression is associated with AML stem progenitor cells and decreased OS in adults, and transcription regulation has been linked to the FLT3/STAT5 pathway. Two CRM inhibitors, a novel class of agents which inhibit nuclear export to restore tumor suppressor function, also maintained sensitivity in the resistant cell lines with an approximate 3-fold increase in IC50 from 12nM in the naïve to 32-40nM in the resistant cells. Experience with the use of directed therapy to target specific somatic events has provided evidence that leukemic evolution can continue under this selection pressure and therapeutic options for patients with emergent disease is often insufficient. Using the high throughput drug assay in a FLT3/ITD+ cell line as an in vitro model for sorafenib-resistant FLT3/ITD patients, we identified classes of targeted agents that maintain sensitivity in resistant cells. Further validation of the targets in specimens from those with resistance to such TKIs can inform on the class of agents that can be used to treat or prevent refractory disease FLT3/ITD+ patients. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document