scholarly journals Nanoliposomal Buparvaquone Immunomodulates Leishmania infantum-Infected Macrophages and Is Highly Effective in a Murine Model

2017 ◽  
Vol 61 (4) ◽  
Author(s):  
Thais Alves da Costa-Silva ◽  
Andrés Jimenez Galisteo ◽  
José Angelo Lauletta Lindoso ◽  
Leandro R. S. Barbosa ◽  
Andre Gustavo Tempone

ABSTRACT Visceral leishmaniasis is a fatal parasitic neglected disease affecting 1.5 million people worldwide. Based on a drug repositioning approach, the aim of this work was to investigate the in vitro immunomodulatory potential of buparvaquone (BPQ) and to establish a safe regimen to evaluate the in vivo efficacy of BPQ entrapped by negatively charged nanoliposomes (BPQ-LP) in Leishmania infantum-infected hamsters. Small-angle X-ray scattering, dynamic light scattering, and the ζ-potential were applied in order to study the influence of BPQ on the liposome structure. Our data revealed that BPQ was located in the polar-apolar interface, snorkeling the polar region, and protected against aggregation inside the lipophilic region. The presence of BPQ also decreased the Z-average hydrodynamic diameter and increased the surface charge. Compared to intravenous and intramuscular administration, a subcutaneous route was a more effective route for BPQ-LP; at 0.4 mg/kg, BPQ-LP reduced infection in the spleen and liver by 98 and 96%, respectively. Treatment for 5 days resulted in limited efficacy, but 10 days of treatment resulted in an efficacy similar to that of a 15-day regimen. The nanoliposomal drug was highly effective, with a mean 50% effective dose of 0.25 mg/kg, reducing the parasite load in bone marrow by 80%, as detected using quantitative PCR analysis. In addition, flow cytometry studies showed that BPQ upregulated cytokines as tumor necrosis factor, monocyte chemoattractant protein 1, interleukin-10 (IL-10), and IL-6 in Leishmania-infected macrophages, eliminating the parasites via a nitric oxide-independent mechanism. This new formulation proved to be a safe and effective treatment for murine leishmaniasis that could be a useful candidate against visceral leishmaniasis.

2012 ◽  
Vol 19 (4) ◽  
pp. 490-498 ◽  
Author(s):  
Kevin W. Bruhn ◽  
Ron Birnbaum ◽  
Jacquelyn Haskell ◽  
Veena Vanchinathan ◽  
Stephanie Greger ◽  
...  

ABSTRACTThere are currently no effective vaccines for visceral leishmaniasis, the second most deadly parasitic infection in the world. Here, we describe a novel whole-cell vaccine approach usingLeishmania infantum chagasipromastigotes treated with the psoralen compound amotosalen (S-59) and low doses of UV A radiation. This treatment generates permanent, covalent DNA cross-links within parasites and results inLeishmaniaorganisms termed killed but metabolically active (KBMA). In this report, we characterize thein vitrogrowth characteristics of both KBMAL. majorand KBMAL. infantum chagasi. Concentrations of S-59 that generate optimally attenuated parasites were identified. Like liveL. infantum chagasi, KBMAL. infantum chagasiparasites were able to initially enter liver cellsin vivoafter intravenous infection. However, whereas liveL. infantum chagasiinfection leads to hepatosplenomegaly in mice after 6 months, KBMAL. infantum chagasiparasites were undetectable in the organs of mice at this time point.In vitro, KBMAL. infantum chagasiretained the ability to enter macrophages and induce nitric oxide production. These characteristics of KBMAL. infantum chagasicorrelated with the ability to prophylactically protect mice via subcutaneous vaccination at levels similar to vaccination with live, virulent organisms. Splenocytes from mice vaccinated with either liveL. infantum chagasior KBMAL. infantum chagasidisplayed similar cytokine patternsin vitro. These results suggest that KBMA technology is a potentially safe and effective novel vaccine strategy against the intracellular protozoanL. infantum chagasi. This approach may represent a new method for whole-cell vaccination against other complex intracellular pathogens.


1997 ◽  
Vol 41 (4) ◽  
pp. 827-830 ◽  
Author(s):  
F Faraut-Gambarelli ◽  
R Piarroux ◽  
M Deniau ◽  
B Giusiano ◽  
P Marty ◽  
...  

Primary and secondary unresponsiveness to meglumine has long been described in human visceral leishmaniasis. However, no studies have been performed to elucidate if these therapeutic failures were due to strain variability in meglumine sensitivity or were related to host factors. We have studied the in vitro sensitivity of 37 strains of Leishmania infantum isolated from 23 patients (11 human immunodeficiency virus-infected and 12 immunocompetent patients) with visceral leishmaniasis. Sensitivity tests were performed by infecting murine macrophages with Leishmania parasites and culturing them in medium containing different concentrations of meglumine. For each test we calculated a 50% effective dose (ED50) corresponding to the meglumine concentration at which 50% of the Leishmania parasites survived. In vitro results were strongly correlated to immediate clinical outcome. All strains requiring an ED50 of >70 microg/ml were related to therapeutic failures, whereas all strains requiring an ED50 of <40 microg/ml corresponded to an initial efficiency of meglumine. Among those patients who were initially improved, relapses occurred in all immunocompromised patients and in most immunocompetent patients who had a short duration of treatment (15 days). Finally, we found that in vitro sensitivity of strains decreased progressively in relapsing patients treated with meglumine. Consequently, the physician may be encouraged to alternate meglumine with other treatments such as amphotericin B or pentamidine, especially in the case of relapsing patients.


2020 ◽  
Vol 64 (9) ◽  
Author(s):  
Letícia Tiburcio Ferreira ◽  
Juliana Rodrigues ◽  
Gustavo Capatti Cassiano ◽  
Tatyana Almeida Tavella ◽  
Kaira Cristina Peralis Tomaz ◽  
...  

ABSTRACT Widespread resistance against antimalarial drugs thwarts current efforts for controlling the disease and urges the discovery of new effective treatments. Drug repositioning is increasingly becoming an attractive strategy since it can reduce costs, risks, and time-to-market. Herein, we have used this strategy to identify novel antimalarial hits. We used a comparative in silico chemogenomics approach to select Plasmodium falciparum and Plasmodium vivax proteins as potential drug targets and analyzed them using a computer-assisted drug repositioning pipeline to identify approved drugs with potential antimalarial activity. Among the seven drugs identified as promising antimalarial candidates, the anthracycline epirubicin was selected for further experimental validation. Epirubicin was shown to be potent in vitro against sensitive and multidrug-resistant P. falciparum strains and P. vivax field isolates in the nanomolar range, as well as being effective against an in vivo murine model of Plasmodium yoelii. Transmission-blocking activity was observed for epirubicin in vitro and in vivo. Finally, using yeast-based haploinsufficiency chemical genomic profiling, we aimed to get insights into the mechanism of action of epirubicin. Beyond the target predicted in silico (a DNA gyrase in the apicoplast), functional assays suggested a GlcNac-1-P-transferase (GPT) enzyme as a potential target. Docking calculations predicted the binding mode of epirubicin with DNA gyrase and GPT proteins. Epirubicin is originally an antitumoral agent and presents associated toxicity. However, its antiplasmodial activity against not only P. falciparum but also P. vivax in different stages of the parasite life cycle supports the use of this drug as a scaffold for hit-to-lead optimization in malaria drug discovery.


2012 ◽  
Vol 80 (8) ◽  
pp. 2948-2955 ◽  
Author(s):  
Yun Sun ◽  
Wen-Jiang Zheng ◽  
Yong-Hua Hu ◽  
Bo-Guang Sun ◽  
Li Sun

ABSTRACTEdwardsiella tarda, a Gram-negative bacterium, is a severe fish pathogen that can also infect humans. In this study, we identified, viain vivo-induced antigen technology, anE. tardaantigen, Eta1, and analyzed its function in a Japanese flounder (Paralichthys olivaceus) model. Eta1 is composed of 226 residues and shares homology with putative bacterial adhesins. Quantitative real-time reverse transcriptase (RT)-PCR analysis indicated that when culturedin vitro,eta1expression was growth phase dependent and reached maximum at mid-logarithmic phase. During infection of flounder lymphocytes,eta1expression was drastically increased at the early stage of infection. Compared to the wild type, theeta1-defective mutant, TXeta1, was unaffected in growth but exhibited attenuated overall virulence, reduced tissue dissemination and colonization capacity, and impaired ability to invade flounder lymphocytes and to block the immune response of host cells. The lost virulence of TXeta1 was restored when a functionaleta1gene was reintroduced into the strain. Western blot and immunodetection analyses showed that Eta1 is localized to the outer membrane and exposed on the surface ofE. tardaand that recombinant Eta1 (rEta1) was able to interact with flounder lymphocytes. Consistent with these observations, antibody blocking of Eta1 inhibitedE. tardainfection at the cellular level. Furthermore, when used as a subunit vaccine, rEta1 induced strong protective immunity in flounder against lethalE. tardachallenge. Taken together, these results indicate that Eta1 is anin vivo-induced antigen that mediates pathogen-host interaction and, as a result, is required for optimal bacterial infection.


2015 ◽  
Vol 83 (12) ◽  
pp. 4604-4616 ◽  
Author(s):  
Laís Sacramento ◽  
Silvia C. Trevelin ◽  
Manuela S. Nascimento ◽  
Djalma S. Lima-Jùnior ◽  
Diego L. Costa ◽  
...  

Leishmania infantumis a protozoan parasite that causes visceral leishmaniasis (VL). This infection triggers dendritic cell (DC) activation through the recognition of microbial products by Toll-like receptors (TLRs). Among the TLRs, TLR9 is required for DC activation by differentLeishmaniaspecies. We demonstrated that TLR9 is upregulatedin vitroandin vivoduring infection. We show that C57BL/6 mice deficient in TLR9 expression (TLR9−/−mice) are more susceptible to infection and display higher parasite numbers in the spleen and liver. The increased susceptibility of TLR9−/−mice was due to the impaired recruitment of neutrophils to the infection foci associated with reduced levels of neutrophil chemoattractants released by DCs in the target organs. Moreover, both Th1 and Th17 cells were also committed in TLR9−/−mice. TLR9-dependent neutrophil recruitment is mediated via the MyD88 signaling pathway but is TIR domain-containing adapter-inducing interferon beta (TRIF) independent. Furthermore,L. infantumfailed to activate both plasmacytoid and myeloid DCs from TLR9−/−mice, which presented reduced surface costimulatory molecule expression and chemokine release. Interestingly, neutrophil chemotaxis was affected bothin vitroandin vivowhen DCs were derived from TLR9−/−mice. Our results suggest that TLR9 plays a critical role in neutrophil recruitment during the protective response againstL. infantuminfection that could be associated with DC activation.


2016 ◽  
Vol 61 (3) ◽  
Author(s):  
Brajendra Tiwari ◽  
Richa Pahuja ◽  
Pradeep Kumar ◽  
Srikanta Kumar Rath ◽  
Kailash Chand Gupta ◽  
...  

ABSTRACT Leishmaniasis chemotherapy remains very challenging due to high cost of the drug and its associated toxicity and drug resistance, which develops over a period of time. Combination therapies (CT) are now in use to treat many diseases, such as cancer and malaria, since it is more effective and affordable than monotherapy. CT are believed to represent a new explorable strategy for leishmaniasis, a neglected tropical disease caused by the obligate intracellular parasite Leishmania. In the present study, we investigated the effect of a combination of a traditional Indian medicine (ayurveda), a natural product curcumin and miltefosine, the only oral drug for visceral leishmaniasis (VL) using a Leishmania donovani-hamster model. We developed an oral nanoparticle-based formulation of curcumin. Nanoformulation of curcumin alone exhibited significant leishmanicidal activity both in vitro and in vivo. In combination with miltefosine, it exhibited a synergistic effect on both promastigotes and amastigotes under in vitro conditions. The combination of these two agents also demonstrated increased in vivo leishmanicidal activity accompanied by increased production of toxic reactive oxygen/nitrogen metabolites and enhanced phagocytic activity. The combination also exhibited increased lymphocyte proliferation. The present study thus establishes the possible use of nanocurcumin as an adjunct to antileishmanial chemotherapy.


2017 ◽  
Vol 62 (1) ◽  
Author(s):  
April C. Joice ◽  
Sihyung Yang ◽  
Abdelbasset A. Farahat ◽  
Heidi Meeds ◽  
Mei Feng ◽  
...  

ABSTRACT Given the limitations of current antileishmanial drugs and the utility of oral combination therapy for other infections, developing an oral combination against visceral leishmaniasis should be a high priority. In vitro combination studies with DB766 and antifungal azoles against intracellular Leishmania donovani showed that posaconazole and ketoconazole, but not fluconazole, enhanced DB766 potency. Pharmacokinetic analysis of DB766-azole combinations in uninfected Swiss Webster mice revealed that DB766 exposure was increased by higher posaconazole and ketoconazole doses, while DB766 decreased ketoconazole exposure. In L. donovani-infected BALB/c mice, DB766-posaconazole combinations given orally for 5 days were more effective than DB766 or posaconazole alone. For example, 81% ± 1% (means ± standard errors) inhibition of liver parasite burden was observed for 37.5 mg/kg of body weight DB766 plus 15 mg/kg posaconazole, while 37.5 mg/kg DB766 and 15 mg/kg posaconazole administered as monotherapy gave 40% ± 5% and 21% ± 3% inhibition, respectively. Combination index (CI) analysis indicated that synergy or moderate synergy was observed in six of nine combined dose groups, while the other three were nearly additive. Liver concentrations of DB766 and posaconazole increased in almost all combination groups compared to monotherapy groups, although many increases were not statistically significant. For DB766-ketoconazole combinations evaluated in this model, two were antagonistic, one displayed synergy, and one was nearly additive. These data indicate that the efficacy of DB766-posaconazole and DB766-ketoconazole combinations in vivo is influenced in part by the pharmacokinetics of the combination, and that the former combination deserves further consideration in developing new treatment strategies against visceral leishmaniasis.


2011 ◽  
Vol 56 (1) ◽  
pp. 432-445 ◽  
Author(s):  
Partha Palit ◽  
Abhijit Hazra ◽  
Arindam Maity ◽  
R. S. K. Vijayan ◽  
Prabu Manoharan ◽  
...  

ABSTRACTNovel antileishmanials are urgently required to overcome emergence of drug resistance, cytotoxic effects, and difficulties in oral delivery. Toward this, we investigated a series of novel 4-aminoquinaldine derivatives, a new class of molecules, as potential antileishmanials. 4-Aminoquinaldine derivatives presented inhibitory effects onL. donovanipromastigotes and amastigotes (50% inhibitory concentration range, 0.94 to 127 μM). Of these, PP-9 and PP-10 were the most effectivein vitroand demonstrated strong efficaciesin vivothrough the intraperitoneal route. They were also found to be effective against both sodium antimony gluconate-sensitive and -resistantLeishmania donovanistrains in BALB/c mice when treated orally, resulting in more than 95% protection. Investigation of their mode of action revealed that killing by PP-10 involved moderate inhibition of dihydrofolate reductase and elicitation of the apoptotic cascade. Our studies implicate that PP-10 augments reactive oxygen species generation, evidenced from decreased glutathione levels and increased lipid peroxidation. Subsequent disruption ofLeishmaniapromastigote mitochondrial membrane potential and activation of cytosolic proteases initiated the apoptotic pathway, resulting in DNA fragmentation and parasite death. Our results demonstrate that PP-9 and PP-10 are promising lead compounds with the potential for treating visceral leishmaniasis (VL) through the oral route.


2016 ◽  
Vol 84 (6) ◽  
pp. 1785-1795 ◽  
Author(s):  
Dina L. Michaels ◽  
Jeffrey A. Leibowitz ◽  
Mohammed T. Azaiza ◽  
Pollob K. Shil ◽  
Suzanne M. Shama ◽  
...  

Mycoplasma caniscan infect many mammalian hosts but is best known as a commensal or opportunistic pathogen of dogs. The unexpected presence ofM. canisin brains of dogs with idiopathic meningoencephalitis prompted newin vitrostudies to help fill the void of basic knowledge about the organism's candidate virulence factors, the host responses that it elicits, and its potential roles in pathogenesis. Secretion of reactive oxygen species and sialidase varied quantitatively (P< 0.01) among strains ofM. canisisolated from canine brain tissue or mucosal surfaces. All strains colonized the surface of canine MDCK epithelial and DH82 histiocyte cells and murine C8-D1A astrocytes. Transit through MDCK and DH82 cells was demonstrated by gentamicin protection assays and three-dimensional immunofluorescence imaging. Strains further varied (P< 0.01) in the extents to which they influenced the secretion of tumor necrosis factor alpha (TNF-α) and the neuroendocrine regulatory peptide endothelin-1 by DH82 cells. Inoculation withM. canisalso decreased major histocompatibility complex class II (MHC-II) antigen expression by DH82 cells (P< 0.01), while secretion of gamma interferon (IFN-γ), interleukin-6 (IL-6), interleukin-10 (IL-10), and complement factor H was unaffected. The basis for differences in the responses elicited by these strains was not obvious in their genome sequences. No acute cytopathic effects on any homogeneous cell line, or consistent patterns ofM. canispolyvalent antigen distribution in canine meningoencephalitis case brain tissues, were apparent. Thus, while it is not likely a primary neuropathogen,M. canishas the capacity to influence meningoencephalitis through complex interactions within the multicellular and neurochemicalin vivomilieu.


2013 ◽  
Vol 57 (4) ◽  
pp. 1714-1722 ◽  
Author(s):  
Shalini Asthana ◽  
Anil K. Jaiswal ◽  
Pramod K. Gupta ◽  
Vivek K. Pawar ◽  
Anuradha Dube ◽  
...  

ABSTRACTThe accessible treatment options for life-threatening neglected visceral leishmaniasis (VL) disease have problems with efficacy, stability, adverse effects, and cost, making treatment a complex issue. Here we formulated nanometric amphotericin B (AmB)-encapsulated chitosan nanocapsules (CNC-AmB) using a polymer deposition technique mediated by nanoemulsion template fabrication. CNC-AmB exhibited good steric stabilityin vitro, where the chitosan content was found to be efficient at preventing destabilization in the presence of protein and Ca2+. A toxicity study on the model cell line J774A and erythrocytes revealed that CNC-AmB was less toxic than commercialized AmB formulations such as Fungizone and AmBisome. The results ofin vitro(macrophage-amastigote system; 50% inhibitory concentration [IC50], 0.19 ± 0.04 μg AmB/ml) andin vivo(Leishmania donovani-infected hamsters; 86.1% ± 2.08% parasite inhibition) experiments in conjunction with effective internalization by macrophages illustrated the efficacy of CNC-AmB at augmenting antileishmanial properties. Quantitative mRNA analysis by real-time PCR (RT-PCR) showed that the improved effect was synergized with the upregulation of tumor necrosis factor alpha (TNF-α), interleukin-12 (IL-12), and inducible nitric oxide synthase and with the downregulation of transforming growth factor β (TGF-β), IL-10, and IL-4. These research findings suggest that a cost-effective CNC-AmB immunoadjuvant chemotherapeutic delivery system could be a viable alternative to the current high-cost commercial lipid-based formulations.


Sign in / Sign up

Export Citation Format

Share Document