scholarly journals Amino Acid Substitutions Account for Most MexS Alterations in ClinicalnfxCMutants of Pseudomonas aeruginosa

2016 ◽  
Vol 60 (4) ◽  
pp. 2302-2310 ◽  
Author(s):  
Charlotte Richardot ◽  
Paulo Juarez ◽  
Katy Jeannot ◽  
Isabelle Patry ◽  
Patrick Plésiat ◽  
...  

ABSTRACTMultidrug-resistant mutants ofPseudomonas aeruginosathat overproduce the active efflux system MexEF-OprN (callednfxCmutants) have rarely been characterized in the hospital setting. Screening of 221 clinical strains exhibiting a reduced susceptibility to ciprofloxacin (a substrate of MexEF-OprN) and imipenem (a substrate of the negatively coregulated porin OprD) led to the identification of 43 (19.5%)nfxCmutants. Subsequent analysis of 22 nonredundant mutants showed that, in contrast to theirin vitro-selected counterparts, only 3 of them (13.6%) harbored a disruptedmexSgene, which codes for the oxidoreductase MexS, whose inactivation is known to activate themexEF-oprNoperon through a LysR-type regulator, MexT. Nine (40.9%) of the clinicalnfxCmutants contained single amino acid mutations in MexS, and these were associated with moderate effects on resistance and virulence factor production in 8/9 strains. Finally, the remaining 10 (45.5%)nfxCmutants did not display mutations in any of the regulators known to controlmexEF-oprNexpression (themexS,mexT,mvaT, andampRgenes), confirming that other loci are responsible for pump upregulation in patients. Collectively, these data demonstrate thatnfxCmutants are probably more frequent in the hospital than previously thought and have genetic and phenotypic features somewhat different from those ofin vitro-selected mutants.

2013 ◽  
Vol 58 (1) ◽  
pp. 221-228 ◽  
Author(s):  
Sophie Guénard ◽  
Cédric Muller ◽  
Laura Monlezun ◽  
Philippe Benas ◽  
Isabelle Broutin ◽  
...  

ABSTRACTConstitutive overproduction of the pump MexXY-OprM is recognized as a major cause of resistance to aminoglycosides, fluoroquinolones, and zwitterionic cephalosporins inPseudomonas aeruginosa. In this study, 57 clonally unrelated strains recovered from non-cystic fibrosis patients were analyzed to characterize the mutations resulting in upregulation of themexXYoperon. Forty-four (77.2%) of the strains, classified asagrZmutants were found to harbor mutations inactivating the local repressor gene (mexZ) of themexXYoperon (n= 33; 57.9%) or introducing amino acid substitutions in its product, MexZ (n= 11; 19.3%). These sequence variations, which mapped in the dimerization domain, the DNA binding domain, or the rest of the MexZ structure, mostly affected amino acid positions conserved in TetR-like regulators. The 13 remaining MexXY-OprM strains (22.8%) contained intactmexZgenes encoding wild-type MexZ proteins. Eight (14.0%) of these isolates, classified asagrW1mutants, overexpressed the gene PA5471, which codes for the MexZ antirepressor AmrZ, with 5 strains exhibiting growth defects at 37°C and 44°C, consistent with mutations impairing ribosome activity. Interestingly, oneagrW1mutant appeared to harbor a 7-bp deletion in the coding sequence of the leader peptide, PA5471.1, involved in ribosome-dependent, translational attenuation of PA5471 expression. Finally, DNA sequencing and complementation experiments revealed that 5 (8.8%) strains, classified asagrW2mutants, harbored single amino acid variations in the sensor histidine kinase of ParRS, a two-component system known to positively controlmexXYexpression. Collectively, these results demonstrate that clinical strains ofP. aeruginosaexploit different regulatory circuitries to mutationally overproduce the MexXY-OprM pump and become multidrug resistant, which accounts for the high prevalence of MexXY-OprM mutants in the clinical setting.


2017 ◽  
Vol 61 (11) ◽  
Author(s):  
Helio S. Sader ◽  
Mariana Castanheira ◽  
Dee Shortridge ◽  
Rodrigo E. Mendes ◽  
Robert K. Flamm

ABSTRACT The in vitro activity of ceftazidime-avibactam and many comparator agents was determined against various resistant subsets of organisms selected among 36,380 Enterobacteriaceae and 7,868 Pseudomonas aeruginosa isolates. The isolates were consecutively collected from 94 U.S. hospitals, and all isolates were tested for susceptibility by reference broth microdilution methods in a central monitoring laboratory (JMI Laboratories). Enterobacteriaceae isolates resistant to carbapenems (CRE) and/or ceftazidime-avibactam (MIC ≥ 16 μg/ml) were evaluated for the presence of genes encoding extended-spectrum β-lactamases and carbapenemases. Ceftazidime-avibactam inhibited >99.9% of all Enterobacteriaceae at the susceptible breakpoint of ≤8 μg/ml and was active against multidrug-resistant (MDR; n = 2,953; MIC50/90, 0.25/1 μg/ml; 99.2% susceptible), extensively drug-resistant (XDR; n = 448; MIC50/90, 0.5/2 μg/ml; 97.8% susceptible), and CRE (n = 513; MIC50/90, 0.5/2 μg/ml; 97.5% susceptible) isolates. Only 82.2% of MDR Enterobacteriaceae (n = 2,953) and 64.2% of ceftriaxone-nonsusceptible Klebsiella pneumoniae (n = 1,063) isolates were meropenem susceptible. Among Enterobacter cloacae (22.2% ceftazidime nonsusceptible), 99.8% of the isolates, including 99.3% of the ceftazidime-nonsusceptible isolates, were ceftazidime-avibactam susceptible. Only 23 of 36,380 Enterobacteriaceae (0.06%) isolates were ceftazidime-avibactam nonsusceptible, including 9 metallo-β-lactamase producers and 2 KPC-producing strains with porin alteration; the remaining 12 strains showed negative results for all β-lactamases tested. Ceftazidime-avibactam showed potent activity against P. aeruginosa (MIC50/90, 2/4 μg/ml; 97.1% susceptible), including MDR (MIC50/90, 4/16 μg/ml; 86.5% susceptible) isolates, and inhibited 71.8% of isolates nonsusceptible to meropenem, piperacillin-tazobactam, and ceftazidime (n = 628). In summary, ceftazidime-avibactam demonstrated potent activity against a large collection (n = 44,248) of contemporary Gram-negative bacilli isolated from U.S. patients, including organisms resistant to most currently available agents, such as CRE and meropenem-nonsusceptible P. aeruginosa.


2015 ◽  
Vol 59 (4) ◽  
pp. 2280-2285 ◽  
Author(s):  
Robert K. Flamm ◽  
Paul R. Rhomberg ◽  
Ronald N. Jones ◽  
David J. Farrell

ABSTRACTRX-P873 is a novel antibiotic from the pyrrolocytosine series which exhibits high binding affinity for the bacterial ribosome and broad-spectrum antibiotic properties. The pyrrolocytosines have shownin vitroactivity against multidrug-resistant Gram-negative and Gram-positive strains of bacteria known to cause complicated urinary tract, skin, and lung infections, as well as sepsis.Enterobacteriaceae(657),Pseudomonas aeruginosa(200), andAcinetobacter baumannii(202) isolates from North America and Europe collected in 2012 as part of a worldwide surveillance program were testedin vitroby broth microdilution using Clinical and Laboratory Standards Institute (CLSI) methodology. RX-P873 (MIC90, 0.5 μg/ml) was >32-fold more active than ceftazidime and inhibited 97.1% and 99.5% ofEnterobacteriaceaeisolates at MIC values of ≤1 and ≤4 μg/ml, respectively. There were only three isolates with an MIC value of >4 μg/ml (all were indole-positiveProtea). RX-P873 (MIC50/90, 2/4 μg/ml) was highly active againstPseudomonas aeruginosaisolates, including isolates which were nonsusceptible to ceftazidime or meropenem. RX-P873 was 2-fold less active againstP. aeruginosathan tobramycin (MIC90, 2 μg/ml; 91.0% susceptible) and colistin (MIC90, 2 μg/ml; 99.5% susceptible) and 2-fold more potent than amikacin (MIC90, 8 μg/ml; 93.5% susceptible) and meropenem (MIC90, 8 μg/ml; 76.0% susceptible). RX-P873, the most active agent againstAcinetobacter baumannii(MIC90, 1 μg/ml), was 2-fold more active than colistin (MIC90, 2 μg/ml; 97.0% susceptible) and 4-fold more active than tigecycline (MIC90, 4 μg/ml). This novel agent merits further exploration of its potential against multidrug-resistant Gram-negative bacteria.


2020 ◽  
Vol 64 (4) ◽  
Author(s):  
Sarah M. McLeod ◽  
Samir H. Moussa ◽  
Meredith A. Hackel ◽  
Alita A. Miller

ABSTRACT Acinetobacter baumannii-calcoaceticus complex (ABC) organisms cause severe infections that are difficult to treat due to preexisting antibiotic resistance. Sulbactam-durlobactam (formerly sulbactam-ETX2514) (SUL-DUR) is a β-lactam–β-lactamase inhibitor combination antibiotic designed to treat serious infections caused by ABC organisms, including multidrug-resistant (MDR) strains. The in vitro antibacterial activities of SUL-DUR and comparator agents were determined by broth microdilution against 1,722 clinical isolates of ABC organisms collected in 2016 and 2017 from 31 countries across Asia/South Pacific, Europe, Latin America, the Middle East, and North America. Over 50% of these isolates were resistant to carbapenems. Against this collection of global isolates, SUL-DUR had a MIC50/MIC90 of 1/2 μg/ml compared to a MIC50/MIC90 of 8/64 μg/ml for sulbactam alone. This level of activity was found to be consistent across organisms, regions, sources of infection, and subsets of resistance phenotypes, including MDR and extensively drug-resistant isolates. The SUL-DUR activity was superior to those of the tested comparators, with only colistin having similar potency. Whole-genome sequencing of the 39 isolates (2.3%) with a SUL-DUR MIC of >4 μg/ml revealed that these strains encoded either the metallo-β-lactamase NDM-1, which durlobactam does not inhibit, or single amino acid substitutions near the active site of penicillin binding protein 3 (PBP3), the primary target of sulbactam. In summary, SUL-DUR demonstrated potent antibacterial activity against recent, geographically diverse clinical isolates of ABC organisms, including MDR isolates.


2020 ◽  
Vol 64 (12) ◽  
Author(s):  
Iris H. Chen ◽  
David P. Nicolau ◽  
Joseph L. Kuti

ABSTRACT Combination therapy may enhance imipenem/cilastatin/relebactam’s (I/R) activity against Pseudomonas aeruginosa and suppress resistance development. Human-simulated unbound plasma concentrations of I/R at 1.25 g every 6 h (h), colistin at 360 mg daily, and amikacin at 25 mg/kg daily were reproduced alone and in combination against six imipenem-nonsusceptible P. aeruginosa isolates in an in vitro pharmacodynamic model over 24 h. For I/R alone, the mean reductions in CFU ± the standard errors by 24 h were −2.52 ± 0.49, −1.49 ± 0.49, −1.15 ± 0.67, and −0.61 ± 0.10 log10 CFU/ml against isolates with MICs of 1/4, 2/4, 4/4, and 8/4 μg/ml, respectively. Amikacin alone also resulted in 24 h CFU reductions consistent with its MIC, while colistin CFU reductions did not differ. Resistant subpopulations were observed after 24 h in 1, 4, and 3 I/R-, colistin-, and amikacin-exposed isolates, respectively. The combination of I/R and colistin resulted in synergistic (n = 1) or additive (n = 2) interactions against three isolates with 24-h CFU reductions ranging from −2.62 to −4.67 log10 CFU/ml. The combination of I/R and amikacin exhibited indifferent interactions against all isolates, with combined drugs achieving −0.51- to −3.33-log10 CFU/ml reductions. No resistant subpopulations were observed during I/R and colistin combination studies, and when added to amikacin, I/R prevented the emergence of amikacin resistance. Against these six multidrug-resistant P. aeruginosa, I/R alone achieved significant CFU reductions against I/R-susceptible isolates. Combinations of I/R plus colistin resulted in additivity or synergy against some P. aeruginosa, whereas the addition of amikacin did not provide further antibacterial efficacy against these isolates.


2000 ◽  
Vol 44 (8) ◽  
pp. 2100-2108 ◽  
Author(s):  
Michael Korsinczky ◽  
Nanhua Chen ◽  
Barbara Kotecka ◽  
Allan Saul ◽  
Karl Rieckmann ◽  
...  

ABSTRACT Atovaquone is the major active component of the new antimalarial drug Malarone. Considerable evidence suggests that malaria parasites become resistant to atovaquone quickly if atovaquone is used as a sole agent. The mechanism by which the parasite develops resistance to atovaquone is not yet fully understood. Atovaquone has been shown to inhibit the cytochrome bc 1 (CYTbc 1) complex of the electron transport chain of malaria parasites. Here we report point mutations in Plasmodium falciparum CYT b that are associated with atovaquone resistance. Single or double amino acid mutations were detected from parasites that originated from a cloned line and survived various concentrations of atovaquone in vitro. A single amino acid mutation was detected in parasites isolated from a recrudescent patient following atovaquone treatment. These mutations are associated with a 25- to 9,354-fold range reduction in parasite susceptibility to atovaquone. Molecular modeling showed that amino acid mutations associated with atovaquone resistance are clustered around a putative atovaquone-binding site. Mutations in these positions are consistent with a reduced binding affinity of atovaquone for malaria parasite CYTb.


2011 ◽  
Vol 56 (3) ◽  
pp. 1646-1649 ◽  
Author(s):  
Seth T. Housman ◽  
Christina Sutherland ◽  
David P. Nicolau

ABSTRACTWe describe the activities of RX-P763, RX-P766, RX-P770, RX-P792, RX-P793, and RX-P808 against strains of resistantPseudomonas aeruginosa. These compounds target the large subunit of the bacterial ribosome and have broad-spectrum activities against multidrug-resistant pathogens. All compounds demonstratedin vitroactivity againstP. aeruginosa, with MIC90values of 4 to 8 μg/ml (range, 0.5 to 64). These novel compounds had narrow MIC distributions and maintained activity despite resistance phenotypes to other commonly utilized agents.


mBio ◽  
2018 ◽  
Vol 9 (6) ◽  
Author(s):  
Melissa D. Barnes ◽  
Magdalena A. Taracila ◽  
Joseph D. Rutter ◽  
Christopher R. Bethel ◽  
Ioannis Galdadas ◽  
...  

ABSTRACT Pseudomonas aeruginosa produces a class C β-lactamase (e.g., PDC-3) that robustly hydrolyzes early generation cephalosporins often at the diffusion limit; therefore, bacteria possessing these β-lactamases are resistant to many β-lactam antibiotics. In response to this significant clinical threat, ceftolozane, a 3′ aminopyrazolium cephalosporin, was developed. Combined with tazobactam, ceftolozane promised to be effective against multidrug-resistant P. aeruginosa. Alarmingly, Ω-loop variants of the PDC β-lactamase (V213A, G216R, E221K, E221G, and Y223H) were identified in ceftolozane/tazobactam-resistant P. aeruginosa clinical isolates. Herein, we demonstrate that the Escherichia coli strain expressing the E221K variant of PDC-3 had the highest minimum inhibitory concentrations (MICs) against a panel of β-lactam antibiotics, including ceftolozane and ceftazidime, a cephalosporin that differs in structure largely in the R2 side chain. The kcat values of the E221K variant for both substrates were equivalent, whereas the Km for ceftolozane (341 ± 64 µM) was higher than that for ceftazidime (174 ± 20 µM). Timed mass spectrometry, thermal stability, and equilibrium unfolding studies revealed key mechanistic insights. Enhanced sampling molecular dynamics simulations identified conformational changes in the E221K variant Ω-loop, where a hidden pocket adjacent to the catalytic site opens and stabilizes ceftolozane for efficient hydrolysis. Encouragingly, the diazabicyclooctane β-lactamase inhibitor avibactam restored susceptibility to ceftolozane and ceftazidime in cells producing the E221K variant. In addition, a boronic acid transition state inhibitor, LP-06, lowered the ceftolozane and ceftazidime MICs by 8-fold for the E221K-expressing strain. Understanding these structural changes in evolutionarily selected variants is critical toward designing effective β-lactam/β-lactamase inhibitor therapies for P. aeruginosa infections. IMPORTANCE The presence of β-lactamases (e.g., PDC-3) that have naturally evolved and acquired the ability to break down β-lactam antibiotics (e.g., ceftazidime and ceftolozane) leads to highly resistant and potentially lethal Pseudomonas aeruginosa infections. We show that wild-type PDC-3 β-lactamase forms an acyl enzyme complex with ceftazidime, but it cannot accommodate the structurally similar ceftolozane that has a longer R2 side chain with increased basicity. A single amino acid substitution from a glutamate to a lysine at position 221 in PDC-3 (E221K) causes the tyrosine residue at 223 to adopt a new position poised for efficient hydrolysis of both cephalosporins. The importance of the mechanism of action of the E221K variant, in particular, is underscored by its evolutionary recurrences in multiple bacterial species. Understanding the biochemical and molecular basis for resistance is key to designing effective therapies and developing new β-lactam/β-lactamase inhibitor combinations.


2011 ◽  
Vol 55 (11) ◽  
pp. 5134-5142 ◽  
Author(s):  
Phillip J. Bergen ◽  
Alan Forrest ◽  
Jürgen B. Bulitta ◽  
Brian T. Tsuji ◽  
Hanna E. Sidjabat ◽  
...  

ABSTRACTThe use of combination antibiotic therapy may be beneficial against rapidly emerging resistance inPseudomonas aeruginosa. The aim of this study was to systematically investigatein vitrobacterial killing and resistance emergence with colistin alone and in combination with imipenem against multidrug-resistant (MDR)P. aeruginosa. Time-kill studies were conducted over 48 h using 5 clinical isolates and ATCC 27853 at two inocula (∼106and ∼108CFU/ml); MDR, non-MDR, and colistin-heteroresistant and -resistant strains were included. Nine colistin-imipenem combinations were investigated. Microbiological response was examined by log changes at 6, 24, and 48 h. Colistin combined with imipenem at clinically relevant concentrations increased the levels of killing of MDR and colistin-heteroresistant isolates at both inocula. Substantial improvements in activity with combinations were observed across 48 h with all colistin concentrations at the low inoculum and with colistin at 4× and 16× MIC (or 4 and 32 mg/liter) at the high inoculum. Combinations were additive or synergistic against imipenem-resistant isolates (MICs, 16 and 32 mg/liter) at the 106-CFU inoculum in 9, 11, and 12 of 18 cases (i.e., 9 combinations across 2 isolates) at 6, 24, and 48 h, respectively, and against the same isolates at the 108-CFU inoculum in 11, 7, and 8 cases, respectively. Against a colistin-resistant strain (MIC, 128 mg/liter), combinations were additive or synergistic in 9 and 8 of 9 cases at 24 h at the 106- and 108-CFU inocula, respectively, and in 5 and 7 cases at 48 h. This systematic study provides important information for optimization of colistin-imipenem combinations targeting both colistin-susceptible and colistin-resistant subpopulations.


2017 ◽  
Vol 61 (7) ◽  
Author(s):  
Zhaojun Zheng ◽  
Nagendran Tharmalingam ◽  
Qingzhong Liu ◽  
Elamparithi Jayamani ◽  
Wooseong Kim ◽  
...  

ABSTRACT The increasing prevalence of antibiotic resistance has created an urgent need for alternative drugs with new mechanisms of action. Antimicrobial peptides (AMPs) are promising candidates that could address the spread of multidrug-resistant bacteria, either alone or in combination with conventional antibiotics. We studied the antimicrobial efficacy and bactericidal mechanism of cecropin A2, a 36-residue α-helical cationic peptide derived from Aedes aegypti cecropin A, focusing on the common pathogen Pseudomonas aeruginosa. The peptide showed little hemolytic activity and toxicity toward mammalian cells, and the MICs against most clinical P. aeruginosa isolates were 32 to 64 μg/ml, and its MICs versus other Gram-negative bacteria were 2 to 32 μg/ml. Importantly, cecropin A2 demonstrated synergistic activity against P. aeruginosa when combined with tetracycline, reducing the MICs of both agents by 8-fold. The combination was also effective in vivo in the P. aeruginosa/Galleria mellonella model (P < 0.001). We found that cecropin A2 bound to P. aeruginosa lipopolysaccharides, permeabilized the membrane, and interacted with the bacterial genomic DNA, thus facilitating the translocation of tetracycline into the cytoplasm. In summary, the combination of cecropin A2 and tetracycline demonstrated synergistic antibacterial activity against P. aeruginosa in vitro and in vivo, offering an alternative approach for the treatment of P. aeruginosa infections.


Sign in / Sign up

Export Citation Format

Share Document